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CHAPTER I 

 GENERAL INTRODUCTION 

 

Ending stocks play an important role in decision making by market participants and 

policy makers. The provision of accurate forecasts of ending stocks is critical as it can timely 

reflect the market situation and reduce the uncertainty faced by decision makers. Over the years, 

the USDA and private analysts have been providing ending stocks forecasts. However, few 

studies have addressed USDA forecasts, and researchers have not investigated analysts’ forecasts 

so far. 

This dissertation focuses on analyzing the ending stocks forecasts issued by these two 

sources. It contains three essays which gradually delve into the USDA and private analysts’ 

forecasting behaviors. The first essay advances existing models and analyze USDA forecasts. 

The proposed model focuses on forecast revisions and retains the link between forecasts and the 

ending stocks. The essay also introduces an error covariance structure specifically for ending 

stocks forecasts. The model is estimated using Bayesian Markov Chain Monte Carlo methods. 

Results show that USDA forecasts are inefficient. 

Given this finding, the model is applied to private analysts’ forecasts to find whether 

analysts can provide “better” forecasts. This part of analysis is performed in the second essay. 

Unlike USDA forecasts, analysts’ forecasts are often incomplete. Thus, Essay Two first 

investigates analysts’ forecasts as a group by combining them to create complete forecast data, 

and then proposes a method of integrating multiple imputation and MCMC estimations to 

analyze individual analysts’ forecasts. Results show that analysts, as a group, are inefficient in 

making ending stocks forecasts. Besides, forecasting behavior vary across individual analysts. 
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Essay Two also finds that analysts and the USDA have similar behavior in forecasting 

corn and soybeans ending stocks. Thus, it is possible that their forecasts affect each other. Hence, 

essay three proposes a method to analyze the forecasts from these two sources together, utilizing 

the overlooked the information in previous studies. Results show that analysts actually forecast 

the USDA forecasts instead of the ending stocks. 

The proposed models and methods are designed for general purposes. Thus, they can be 

easily extended by including additional features, as well as can be applied to other fixed-events. 
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CHAPTER 2 

USDA FORECASTS OF CROP ENDING STOCKS: HOW GOOD ARE THEY? 

 

2.1 Abstract 

This paper evaluates forecasts of U.S. ending stocks for corn, soybeans and wheat issued 

by the U.S. Department of Agriculture (USDA) for the marketing years 1985/86 through 

2013/14. The proposed efficiency tests focus on forecast revisions, with emphasis on the link 

between forecasts and final ending stocks. Forecast errors are decomposed into the sum of 

monthly unforecastable shocks and USDA’s own idiosyncratic errors. The error covariance 

matrix contains both heteroscedasticity and auto-correlations. Results suggest that the USDA 

forecasts are inefficient, providing strong evidence that the USDA is conservative in forecasting 

the ending stocks. Shocks are found to be heteroscedastic, and idiosyncratic errors not negligible. 

 

2.2 Introduction 

The U.S. Department of Agriculture (USDA) provides different forecasts of supply and 

demand for major agricultural commodities in its monthly World Agricultural Supply and 

Demand Estimates (WASDE) reports. These forecasts include various balance sheet components 

for each crop, such as beginning stocks, imports, production, domestic use, exports, and ending 

stocks. It can be argued that the public provision of this information is valuable for market 

participants and enhances the overall functioning of agricultural markets. The WASDE forecasts 

not only provide the commodity’s fundamental conditions for the private sector to make 

decisions, but also provide an important basis for relevant government policies (Allen 1994). 

Researchers have found that farmers, agribusinesses, government agencies and other market 
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participants place substantial value on WASDE forecasts, and adjust their market behavior 

accordingly. (e.g., Bauer and Orazem 1994, Garcia et al. 1997, Isengildina-Massa et al. 2008a, 

2008b, Adjemian 2012) 

Ending stock is a measure of carryover of a commodity which enters the supply side of 

the market in the following marketing year. It reflects the imbalance of supply and demand of the 

commodity of interest. Many studies in agricultural forecasts have analyzed the accuracy and 

efficiency of USDA price and production forecasts. (e.g., Irwin et al. 1994, Sanders and 

Manfredo 2002, 2003, Isengildina et al. 2004, 2006) In contrast, little attention has been paid to 

the ending stocks forecasts. To the best of our knowledge, only Botto et al. (2006) and 

Isengildina-Massa et al. (2013) have included ending stocks forecasts in their analyses. Botto et 

al. (2006) used a frequentist approach to investigate the accuracy of USDA ending stocks 

forecasts and estimated the trends in the forecast accuracy over the marketing years 1980/81 

through 2003/04. They find a significant downward trend in the variance of forecast errors when 

forecast horizon shortens. They also find that almost all balance sheet categories are significant 

in explaining errors in ending stocks forecasts. Isengildina-Massa et al. (2013) analyzed how 

WASDE forecast errors are affected by selected behavioral and macroeconomic factors over the 

marketing years 1987/88 through 2009/10. They found strong evidence of inefficiency for both 

types of factors for the ending stocks forecasts. 

USDA ending stocks forecasts are fixed-event forecasts, because they are made for a 

specific target (ending stocks), but have different forecast horizons. Previous research on fixed-

event forecasts has often examined macroeconomic variables such as inflation rate, interest rate, 

and real and nominal GDP growth rates. (e.g., Clements 1995, 1997, Romer and Romer 2000, 

Harvey et al. 2001, Clements et al. 2007) The models in the literature can be classified into two 
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main categories, namely, those based on Nordhaus (1987) and the ones following Davies and 

Lahiri (1995, 1999). 

The models based on Nordhaus (1987) focus on forecast revisions. Nordhaus (1987) 

introduced a weak efficiency test which only uses information on past forecasts because the 

forecast history is always available to the public. The test consists of assessing whether changes 

in forecasts are affected by past forecast changes. Nordhaus (1987) applied the test to several 

macroeconomic, energy consumption, and oil price forecasts. He found significant 

autocorrelations in the revisions of these forecasts. Isengildina et al. (2006) extended Nordhaus’ 

test and applied it to evaluate the USDA crop production forecasts. They found positive 

autocorrelations in forecast revisions. However, assumption of i.i.d. errors in the model may not 

be realistic. On one hand, the size of revisions may vary in different months, because the arrival 

of new information may have seasonal patterns. For example, in the early months of the 

forecasting cycle for crop ending stocks, revisions are likely to be larger relative to those in later 

months because of the uncertainty in crop production. On the other hand, errors can also be 

correlated if one takes into account that forecasters often correct their own errors in previous 

forecasts. Thus, it is interesting to analyze forecasters’ behavior with a generalized error 

covariance structure. 

Unlike the Nordhaus model, the framework advocated by Davies and Lahiri (1995, 1999) 

directly focuses on the forecast errors. They decompose the forecast errors into the sum of 

unforecastable shocks and the forecaster’s own idiosyncratic errors. Their framework provides a 

way to explain the reason why forecasts made at a date closer to the target event tend to be more 

precise. Specifically, the fact that early forecasts typically have large variances can be explained 

by the stack of unforecastable shocks. As the forecasting horizons shorten, unforecastable shocks 
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are gradually revealed, so that less uncertainty is remained in forecasting. This approach is in 

line with studies of forecasts in other areas of fixed-events. (e.g., Egelkraut et al. 2003, for crop 

production forecasts) Based on the Davies and Lahiri framework, Clements et al. (2007) first 

analyzed forecast revisions by differencing the forecast errors. In this way, they avoided the 

possible problem in the original Davies and Lahiri model that the dependent variables could be 

correlated with the errors. However, they only investigated the relationship between non-

adjacent forecast revisions as endogeneity would occur if adjacent forecast revisions are used. 

Therefore they did not consider the impact of the most updated information. Besides, they did 

not fully estimate the error covariance matrix. Instead, they simplified the estimations by only 

considering the diagonal elements or restricting the idiosyncratic errors to be zero. 

Based on the model proposed by Clements et al. (2007), the present study develops an 

estimation framework for examining the efficiency of fixed-event forecasts. We revisit the 

Nordhaus (1987) and Davies and Lahiri (1995, 1999) models and investigate forecast revisions 

by emphasizing the link between the forecasts and the forecast target, which is not included in 

the original Nordhaus test. Our framework also decomposes the errors into the sum of 

unforecastable shocks and USDA’s own errors. Specifically, we take into account the 

forecaster’s correction of their own errors. If such corrections occur and forecasts are efficient, 

then adjacent forecast revisions must be negatively correlated. Thus, the results from the original 

Nordhaus test are biased if forecasters in fact do correct their own errors. 

The present study also makes the following three contributions to the literature. First, it 

introduced and error covariance matrix which is unique for crop ending stocks forecasts. Unlike 

other fixed event forecasts, there is a large number of forecast observations for the ending stock 

of a marketing year. Thus, it might not be wise to ignore the possible complex error structure 
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implied by these forecasts. By focusing solely on ending stocks forecasts, we can step further by 

building a specific error covariance structure for them and hence do a deeper investigation. 

Besides, some studies on fixed-event forecasts typically run ordinary least squares (OLS) first 

and then calculate the elements in the error covariance matrix. In contrast, the proposed error 

structure has reduced number of parameters to be estimated. This is especially useful for ending 

stocks forecasts which have many more forecast observations within a forecasting cycle. We also 

allow conditional heteroscedasticity in the error covariance matrix. On one hand, it reduces 

restrictions and fits the data better as it represents the size of shocks. On the other hand, it 

improves the estimates of the variances of the coefficients, increasing the credibility of the 

significance test. The proposed error covariance structure can be easily extended to other types 

of fixed-event forecasts. 

Secondly, the test in our proposed framework is performed by estimating a system of 

equations instead of a single equation as in previous literature. The consideration of forecasters’ 

correction of errors introduces autocorrelations and generates endogeneity if adjacent forecast 

revisions are used as explanatory variables. To address this issue, we treat the first forecast 

revision for each marketing year as exogenous, and all of the subsequent revisions as 

endogenous. The later revisions are formed by the joint effects of the first revisions, 

unforecastable shocks, and USDA’s own errors. The revisions occurred within a marketing year 

are viewed as in the same panel. The efficiency test is then performed by estimating a system 

containing such panels from different marketing years. This method allows us to perform 

efficiency tests by only considering forecast revisions, which eliminates the problems that arise 

when the forecast errors are used directly. 
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Thirdly, the econometric analysis in our study is performed by means of a Bayesian 

Markov Chain Monte Carlo (MCMC) approach. Unlike frequentist approaches, Bayesian 

methods yield the full posterior distributions for the parameters of interest, which is especially 

useful when estimating parameters, such as error variances, are highly likely to be skewed. The 

method allows us to estimate the regression coefficients and the error covariance matrix in one 

iteration step. 

The remainder of the study is organized as follows: Section 2.3 reviews the background 

models for analyzing the fixed-event forecasts and introduces the advocated model for evaluating 

crop ending stocks forecasts. Section 2.4 introduces the data and provides descriptive statistics. 

Section 2.5 presents the empirical MCMC methods employed for the estimation. Section 2.6 

discusses the results, and the final section provides concluding remarks. 

 

2.3 The Model 

The present study evaluates USDA crop ending stocks forecasts by testing for bias and 

efficiency. The null hypothesis is as follows: 

𝐻𝐻0: USDA forecasts are unbiased and efficient forecasts of ending stocks. 

A rejection of 𝐻𝐻0 indicates that USDA forecasts are inefficient and can be improved upon by 

using existing information.  

 

2.3.1 Background Models 

Empirical studies on testing forecast bias and efficiency are typically based on Mincer 

and Zarnowitz (1969). To express their model in our notation, let 𝑆𝑆𝑡𝑡 represent the realization of 

the ending stocks of a given commodity at the end of marketing year 𝑡𝑡 Let 𝑛𝑛 be the forecast 
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horizon (i.e., the number of months between the time the forecast is made and the final ending 

stocks) and 𝑈𝑈𝑡𝑡,𝑛𝑛 be the USDA 𝑛𝑛-month-ahead forecast of the ending stocks 𝑆𝑆𝑡𝑡. The bias of the 

forecasts can be tested by fitting the Mincer and Zarnowitz (1969) regression: 

 𝑆𝑆𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝑈𝑈𝑡𝑡,𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡,𝑛𝑛 (2.1) 

Under the null hypothesis 𝐻𝐻0: (𝑎𝑎, 𝑏𝑏) = (0,1), USDA forecasts of ending stocks are unbiased. 

A preferred specification is obtained by imposing 𝛽𝛽 = 1 in regression (2.1), which yields 

 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝑎𝑎 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡,𝑛𝑛 (2.2) 

The difference 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛 represents the error of the 𝑛𝑛-month-ahead USDA forecast. Regression 

(2.2) is widely used because it is more intuitive and does not require the forecast 𝑈𝑈𝑡𝑡,𝑛𝑛 to be 

uncorrelated with the residual in regression (2.1). 

The forecasts of ending stocks are fixed-event forecasts. Thus, the regression errors in 

(2.2) are inherently correlated with each other (i.e. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡,𝑛𝑛 and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡,𝑚𝑚>𝑛𝑛 are correlated 

because they overlap over period 𝑛𝑛). If the covariance structure of the regression errors does not 

incorporate this correlation, estimates of the variances of the parameters could be biased, thereby 

undermining the credibility of inferences based on the significance tests. 

The research based on Nordhaus (1987) suggests focusing on forecast revisions instead. 

Nordhaus points out that it is difficult to test strong efficiency in the form of rational 

expectations, because it is impossible to incorporate into the test all of the information available 

at the time the forecasts are issued. However, the information on past forecasts is always 

available to the public. Nordhaus thus introduced a weak efficiency test which is solely based on 

past forecasts. A forecast is said to be weakly efficient if both the current forecast error and 
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forecast revision are independent of all past forecast revisions. According to this, the following 

test can be performed to test for weak efficiency: 

 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝛾𝛾𝑡𝑡�𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1� + 𝜁𝜁𝑡𝑡,𝑛𝑛,𝑓𝑓𝑒𝑒𝑒𝑒 𝑒𝑒𝑎𝑎𝑒𝑒ℎ 𝑡𝑡 (2.3) 

where 𝜁𝜁𝑡𝑡,𝑛𝑛 follows a normal distribution with fixed variance. For each year, the test is performed 

by pooling over all forecast revisions in that year. A 𝛾𝛾𝑡𝑡 significantly different from zero means 

rejection of weak efficiency, implying that forecasts can be improved upon by using information 

from past forecasts. 

Isengildina et al. (2006) modified the Nordhaus model by pooling over all forecast 

revisions for a certain month instead of a certain year to reduce the number of regressions to be 

estimated. Isengildina et al. (2013) further extend it by including a bias term and additional 

public information which results in the following model: 

 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡𝑛𝑛 = 𝑎𝑎𝑛𝑛 + 𝛾𝛾�𝑈𝑈𝑡𝑡𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1� + 𝑏𝑏𝑛𝑛𝐶𝐶𝑡𝑡,𝑛𝑛 + 𝜁𝜁𝑡𝑡,𝑛𝑛,𝑓𝑓𝑒𝑒𝑒𝑒 𝑒𝑒𝑎𝑎𝑒𝑒ℎ 𝑛𝑛 (2.4) 

where 𝑎𝑎𝑛𝑛 is the forecast revision bias, and 𝐶𝐶𝑡𝑡,𝑛𝑛 is an explanatory variable representing publicly 

available information. 

Unlike the Nordhaus model, Davies and Lahiri (1995, 1999) focus on forecast errors 

directly. They suggest that there are two types of errors for fixed-event forecasts. The first type 

consists of unforecastable shocks within the forecasting cycle. These shocks typically arise from 

elements which cannot be controlled by the forecaster, such as changes in economic structure, 

market conditions, or deviations of benchmark assumptions.1 The second type is the forecaster’s 

idiosyncratic errors, which stem from the forecaster’s subjective views and/or his private model. 

                                                             
1 For agricultural forecasts, one example is related to weather. The realizations of weather often deviate from the 
assumptions used in models in a forecasting cycle. The impact on forecasts can thus be explained as shocks which 
cannot be controlled by forecasters. 
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In the present notation, the Davies and Lahiri decomposition of the error term for a single 

forecaster2 can be decomposed as 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡,𝑛𝑛 = 𝜆𝜆𝑡𝑡,𝑛𝑛 + 𝜀𝜀𝑡𝑡,𝑛𝑛 (2.5) 

where 𝜆𝜆𝑡𝑡,𝑛𝑛 represents the unforecastable shock for forecast horizon 𝑛𝑛 and marketing year 𝑡𝑡, and 

𝜀𝜀𝑡𝑡,𝑛𝑛~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎2) is the idiosyncratic error. The shock term 𝜆𝜆𝑡𝑡,𝑛𝑛 can be further decomposed as 

the sum of 𝑖𝑖. 𝑖𝑖.𝑑𝑑. monthly shocks: 

 𝜆𝜆𝑡𝑡,𝑛𝑛 = �𝑘𝑘𝑡𝑡,𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

 (2.6) 

where 𝑘𝑘𝑡𝑡𝑗𝑗~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎𝑗𝑗2) can be interpreted as monthly shocks. The idea underlying the 

decomposition of (2.6) is that a forecast made at a date closer to the target event tends to be more 

precise; hence it should have a smaller forecast error variance. Note that the structure in (2.6) 

implies that the unforecastable shocks 𝜆𝜆𝑡𝑡,𝑛𝑛 are correlated within each marketing year 𝑡𝑡. This is 

because of the overlaps of forecast horizons. Therefore, the bias test developed from the Davies 

and Lahiri framework can be written as 

 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑛𝑛 + �𝑘𝑘𝑡𝑡,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡,𝑛𝑛 (2.7) 

where 𝑎𝑎𝑛𝑛 represents the forecast bias. 

Based on the Davies and Lahiri framework, Clements et al. (2007) proposed analyzing 

forecast revisions by differencing the forecast errors. In the present notation, their test can be 

written as 

 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑛𝑛 − 𝑎𝑎𝑛𝑛−1 + 𝜔𝜔𝑡𝑡,𝑛𝑛 (2.8) 

                                                             
2 The Davies and Lahiri model is developed for a three-dimensional analysis of panel data. The notation 
representing the forecasters is omitted because we only consider a single forecaster – the USDA. 
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where 𝜔𝜔𝑡𝑡,𝑛𝑛 ≡ 𝑘𝑘𝑡𝑡,𝑛𝑛 + 𝜀𝜀𝑡𝑡,𝑛𝑛 − 𝜀𝜀𝑡𝑡,𝑛𝑛−1, and 𝑘𝑘𝑡𝑡,𝑛𝑛 is assumed to be homoscedastic. This model provides 

a thought to investigate the forecast revisions in the Davies and Lahiri framework. However, 

Clements et al. (2007) did not consider adjacent forecast revisions, which represent the impacts 

of most updated information. Besides, they simplified the estimation of the covariance matrix. 

Their estimation did not account for the negative correlations generated by the 𝜀𝜀𝑡𝑡,𝑛𝑛’s. They also 

proposed a simplification by restricting 𝜀𝜀𝑡𝑡,𝑛𝑛’s to be zero. Thus the error covariance matrix is not 

fully estimated and the estimated parameters do not reveal the characteristics of the forecasts. 

Thus, it is necessary to develop a method to obtain a full estimation of the matrix. 

 

2.3.2 Proposed Model 

Based on Clements et al. (2007), we develop an efficiency test which combines the 

characteristics of the Nordhaus (1987) and Davies and Lahiri (1995, 1999) models. We first 

decompose the forecast bias 𝑎𝑎𝑛𝑛 as the sum of monthly biases so that individual bias is allowed as 

in Clements et al. (2007): 

 𝑎𝑎𝑛𝑛 = �𝛼𝛼𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (2.9) 

where 𝛼𝛼𝑗𝑗 represents the bias of the 𝑛𝑛-month-ahead forecast revision. In this way, regression (2.7) 

becomes: 

 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡𝑛𝑛 = �𝛼𝛼𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ �𝑘𝑘𝑡𝑡𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡𝑛𝑛 (2.10) 

Given the structure of regression (2.10), we apply first differencing as in Clements et al. 

(2007) to obtain a system of equations, where only forecast revisions of consecutive months 

appear: 
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⎩
⎨

⎧
𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1 = 𝛼𝛼1 + 𝑘𝑘𝑡𝑡,1      + 𝜀𝜀𝑡𝑡,1        

𝑈𝑈𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2 = 𝛼𝛼2 + 𝑘𝑘𝑡𝑡,2      − 𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2
⋮

𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁 = 𝛼𝛼𝑁𝑁 + 𝑘𝑘𝑡𝑡,𝑁𝑁 − 𝜀𝜀𝑡𝑡,𝑁𝑁−1 + 𝜀𝜀𝑡𝑡,𝑁𝑁

 (2.11) 

In (2.11), 𝑁𝑁 is the maximum forecast horizon for a marketing year, 𝜀𝜀𝑡𝑡,𝑛𝑛~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎2) are 

idiosyncratic errors, and 𝑘𝑘𝑡𝑡,𝑗𝑗~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎𝑗𝑗2) are monthly shocks with different variances for 

different forecast horizons. The assumption of heteroscedastic shocks is reasonable for fixed-

event forecasts, especially for ending stocks forecasts whose forecast horizon is long. For 

example, larger variances can be expected in early revisions of ending stocks forecasts because 

of the uncertainty from productions.3 In addition, seasonality in consumption, trade, and 

production patterns for many crops means that the arrival of new information is most likely to 

vary from month to month, again making it more realistic to assume heteroscedasticity in shocks. 

Autocorrelations also exist in the residuals of system (2.11). They stem from the 

idiosyncratic errors and can be interpreted as forecasters’ corrections of their own errors. For 

example, suppose forecasters make no idiosyncratic errors in a particular year 𝜏𝜏 except for 

misinterpreting a piece of information when issuing their 𝑛𝑛th forecast, causing it to unduly 

underestimate the ending stocks. That is, 𝜀𝜀𝜏𝜏,𝑚𝑚≠𝑛𝑛 = 0 and 𝜀𝜀𝜏𝜏,𝑛𝑛 > 0. Then the revision for the 𝑛𝑛th 

horizon (𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1) will be smaller (by −𝜀𝜀𝜏𝜏,𝑛𝑛) than it should be, and it will be followed by an 

(𝑛𝑛 − 1)th revision greater (by 𝜀𝜀𝜏𝜏,𝑛𝑛) than it would have been otherwise. The Nordhaus model 

does not build in this feature due to their strong 𝑖𝑖. 𝑖𝑖.𝑑𝑑. assumptions on the idiosyncratic errors. 

The efficiency test based on (2.11) consists of fitting 

                                                             
3 For example, shocks to production output, such as weather conditions, can be substantial. 
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⎩
⎨

⎧
𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1 = 𝛼𝛼1 + 𝛽𝛽1𝑋𝑋𝑡𝑡,1 + 𝑘𝑘𝑡𝑡,1      + 𝜀𝜀𝑡𝑡,1        

𝑈𝑈𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2 = 𝛼𝛼2 + 𝛽𝛽2𝑋𝑋𝑡𝑡,2 + 𝑘𝑘𝑡𝑡,2      − 𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2
⋮

𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁 = 𝛼𝛼𝑁𝑁 + 𝛽𝛽𝑁𝑁𝑋𝑋𝑡𝑡,𝑁𝑁 + 𝑘𝑘𝑡𝑡,𝑁𝑁 − 𝜀𝜀𝑡𝑡,𝑁𝑁−1 + 𝜀𝜀𝑡𝑡,𝑁𝑁

 (2.12) 

where 𝑋𝑋𝑡𝑡,𝑛𝑛 can be a variable or a vector, representing one or more explanatory variables known 

at the time the forecast is made. The null hypothesis 𝐻𝐻0: 𝛼𝛼𝑛𝑛 = 𝛽𝛽𝑛𝑛 = 0 for all 𝑛𝑛 indicates that 𝑈𝑈𝑡𝑡,𝑛𝑛 

is an efficient forecast of 𝑆𝑆𝑡𝑡, in the sense that forecast errors cannot be predicted using available 

information. As pointed out in the literature (e.g., Nordhaus 1987), it is impossible to include all 

past information in 𝑋𝑋𝑡𝑡,𝑛𝑛. Therefore, we follow Nordhaus (1987) and construct a test for weak 

efficiency by letting the past forecast revision be the explanatory variable, i.e., 𝑋𝑋𝑡𝑡,𝑛𝑛 = 𝑈𝑈𝑡𝑡,𝑛𝑛 −

𝑈𝑈𝑡𝑡,𝑛𝑛+1. 

Our model builds upon the Nordhaus test by further identifying the unforecastable shocks 

and the forecaster’s own errors. Given the proposed covariance structure, system (2.12) can no 

longer be estimated by OLS, because the explanatory variable 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1 is negatively 

correlated with the idiosyncratic error 𝜀𝜀𝑡𝑡,𝑛𝑛.4 Thus, estimate the equations as a system by treating 

the forecast revisions within the same marketing year as a panel.  

Due to the limited size of the data about ending stocks forecasts, estimating 𝛼𝛼1, … ,𝛼𝛼𝑁𝑁 

and 𝛽𝛽1, … ,𝛽𝛽𝑁𝑁 separately results in too many parameter estimates relative to the number of 

observations. Hence, we impose the restrictions 𝛼𝛼1 = ⋯ = 𝛼𝛼𝑁𝑁 = 𝛼𝛼 and 𝛽𝛽1 = ⋯ = 𝛽𝛽𝑁𝑁 = 𝛽𝛽, 

which lead to the following system of equations used for estimation purposes: 

 

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1 = 𝛼𝛼 + 𝛽𝛽(𝑈𝑈𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2)      + 𝑘𝑘𝑡𝑡,1       + 𝜀𝜀𝑡𝑡,1        

𝑈𝑈𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2 = 𝛼𝛼 + 𝛽𝛽�𝑈𝑈𝑡𝑡,2 − 𝑈𝑈𝑡𝑡,3�      + 𝑘𝑘𝑡𝑡,2      − 𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2
⋮

𝑈𝑈𝑡𝑡,𝑁𝑁−2 − 𝑈𝑈𝑡𝑡,𝑁𝑁−1 = 𝛼𝛼 + 𝛽𝛽�𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁� + 𝑘𝑘𝑡𝑡,𝑁𝑁−1 − 𝜀𝜀𝑡𝑡,𝑁𝑁−2 + 𝜀𝜀𝑡𝑡,𝑁𝑁−1

 (2.13) 

                                                             
4 This negative correlation leads to the OLS estimates of the slope coefficients (𝛽𝛽) biased toward zero, as the 
problem is analogous to the well-known “attenuation” caused by measurement errors in the explanatory variables. 
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The last equation in (2.12) is discarded because the first forecast of each marketing year can only 

be used to calculate the explanatory variable. Therefore system (2.13) comprises only 𝑁𝑁 − 1 

equations. The system of equations offers an overall assessment of bias and efficiency of USDA 

forecast performance. Succinctly, letting 𝑈𝑈𝑡𝑡,0 = 𝑆𝑆𝑡𝑡 and 𝜀𝜀𝑡𝑡,0 = 0, system (2.13) can be rewritten 

as 

 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 =  𝛼𝛼 + 𝛽𝛽�𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1� + 𝑘𝑘𝑡𝑡,𝑛𝑛−1 − 𝜀𝜀𝑡𝑡,𝑛𝑛−1 + 𝜀𝜀𝑡𝑡,𝑛𝑛 (2.14) 

for 𝑛𝑛 = 1, … ,𝑁𝑁 − 1. 

System (2.14) can be viewed as an improvement on both streams of the literature 

discussed earlier. It reduces the restrictions on the error covariance matrix by allowing for both 

regression error heteroscedasticity and autocorrelations. At the same time, it introduces an error 

covariance structure to estimate a minimal number of covariance parameters. 

To see the covariance structure, consider system (2.14) for a single marketing year. The 

data is sorted by forecast horizon 𝑛𝑛 = 1, … ,𝑁𝑁. If we assume that both 𝜀𝜀𝑡𝑡,𝑗𝑗’s and 𝑘𝑘𝑡𝑡,𝑗𝑗’s are 𝑖𝑖. 𝑖𝑖.𝑑𝑑., 

the covariance matrix is 

 𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡𝜎𝜎1

2 + 𝜎𝜎2 −𝜎𝜎2 0 … 0
−𝜎𝜎2 𝜎𝜎22 + 2𝜎𝜎2 −𝜎𝜎2 ⋮

0 −𝜎𝜎2 ⋱ −𝜎𝜎2 0
⋮ −𝜎𝜎2 𝜎𝜎𝑁𝑁−22 + 2𝜎𝜎2 −𝜎𝜎2

0 … 0 −𝜎𝜎2 𝜎𝜎𝑁𝑁−12 + 2𝜎𝜎2⎦
⎥
⎥
⎥
⎥
⎤

(𝑁𝑁−1)×(𝑁𝑁−1)

 (2.15) 

It can be seen that the difference in total error variances are contributed by differences in 

variances of monthly shocks. Also there are correlations between adjacent regression equations. 

Regarding to ending stocks, the maximum forecast horizon is 17 months for corn and 

soybeans, 14 months for wheat.  As the maximum horizon is larger than 12 month, there are 

instances where ending stocks forecasts for two consecutive crop years are issued 
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simultaneously. Since shocks for consecutive crop years are likely to be correlated (e.g., a 

negative demand shock will result in higher ending stocks for both the current and the following 

marketing year), we also estimate system (2.14) using the alternative covariance matrix (2.16) 

instead of (2.15): 

𝐵𝐵�(𝑁𝑁−1)×(𝑁𝑁−1)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎1

2 + 𝜎𝜎2 −𝜎𝜎2 0 … 𝜎𝜎12 0 0 0
−𝜎𝜎2 𝜎𝜎22 + 2𝜎𝜎2 −𝜎𝜎2 𝜎𝜎22 0 0

0 −𝜎𝜎2 ⋱ 𝜎𝜎32 0
⋮ ⋱ 𝜎𝜎42

𝜎𝜎12 𝜎𝜎�𝑁𝑁−42 + 2𝜎𝜎2 ⋮
0 𝜎𝜎22 𝜎𝜎�𝑁𝑁−32 + 2𝜎𝜎2 −𝜎𝜎2 0
0 0 𝜎𝜎32 −𝜎𝜎2 𝜎𝜎�𝑁𝑁−22 + 2𝜎𝜎2 −𝜎𝜎2

0 0 0 𝜎𝜎42 … 0 −𝜎𝜎2 𝜎𝜎�𝑁𝑁−12 + 𝜎𝜎2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(2.16) 

where 𝜎𝜎�𝑛𝑛+122 = 𝜎𝜎𝑛𝑛+122 + 𝜎𝜎𝑛𝑛2 for 1 < 𝑛𝑛 < 𝑁𝑁 − 12. The assumption underlying covariance matrix 

(2.16) is that next year’s shock 𝑘𝑘�𝑡𝑡+1,𝑛𝑛+12 consists of this year’s shock 𝑘𝑘𝑡𝑡,𝑛𝑛 plus orthogonal shock 

𝑘𝑘𝑡𝑡+1,𝑛𝑛+12.5 That is, 

 𝑘𝑘�𝑡𝑡+1,𝑛𝑛+12 = 𝑘𝑘𝑡𝑡,𝑛𝑛 + 𝑘𝑘𝑡𝑡+1,𝑛𝑛+12 (2.17) 

In this way, 𝐶𝐶𝑒𝑒𝐶𝐶�𝑘𝑘�𝑡𝑡+1,𝑛𝑛+12,𝑘𝑘𝑡𝑡,𝑛𝑛� = 𝜎𝜎𝑛𝑛2. 

The structure of the data is characterized by two dimensions, namely, forecast horizon 𝑛𝑛 

and marketing year 𝑡𝑡. While the order of the equations does not affect the estimation, it is 

interesting to see the structure of the full covariance matrix. Without loss of generality, we can 

sort the data first by forecast horizon and then by marketing year.6 Thus, in the case of 

covariance matrix (2.16), the full 𝑇𝑇(𝑁𝑁 − 1) × 𝑇𝑇(𝑁𝑁 − 1) covariance matrix of the error term can 

be expressed as 

                                                             
5 Note that shocks with horizon greater than 12 are always for the next marketing year. 
6 Instead, we can sort the data first by marketing year then by forecast horizon. The error covariance matrix will be 
different, but the estimation results won’t change. 
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 Σ� = �
𝐵𝐵� 0 … 0
0 𝐵𝐵� … 0
⋮ ⋮ ⋮
0 0 … 𝐵𝐵�

�

𝑇𝑇×𝑇𝑇

 (2.18) 

 

2.4 Data 

The model is applied to data on U.S. ending stocks and their corresponding USDA 

monthly forecasts for three major agricultural commodities - corn, soybeans and wheat. U.S. 

ending stocks are obtained from the Grain Stocks Report released by the National Agricultural 

Statistics Service (NASS). The report is issued quarterly, typically in early January, and at the 

end of March, June and September. Specifically, ending stocks data for corn and soybeans are 

retrieved from the September report (the first report after the ending of the U.S. marketing year 

for these two commodities), whereas ending stocks data for wheat are retrieved from the June 

report.7 For each commodity, ending stocks from the marketing years 1984/85 through 2013/14, 

a total of 29 marketing years, are used to fit the model. 

The USDA monthly forecasts are retrieved from the WASDE reports. The U.S. 

marketing year for corn and soybean starts in September and ends in August of the following 

calendar year. For each marketing year, the first USDA forecast for corn and soybeans is 

released in May, before the marketing year begins. The last forecast is released in September, 

after the marketing year ends and before the release of the ending stock of that marketing year. 

The U.S. marketing year for wheat is different for corn and soybeans, as it starts in June and ends 

in May of the following calendar year. However, the first USDA forecast for wheat ending 

stocks is also released in May (together with the first forecast for corn and soybeans), and the last 

                                                             
7 In rare cases there have been revisions of the ending stocks in the Grain Stocks Report, but they have been 
typically quite small. In this situation, we use the finalized ending stocks in later reports.  
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forecast is released in June of the following calendar year. Thus, for each marketing year there 

are 17 forecasts for corn and soybeans, and 14 forecasts for wheat. 

Since ending stock values are strictly positive and with a distribution skewed to the right, 

all the data are transformed into logarithms. In this way, forecast revisions represent percentage 

changes instead of changes in levels. As discussed in the previous section, the structure of the 

model prevents us from using the entire forecast dataset to compute the dependent variable, as 

the first forecast of each marketing year can only be used to calculate the explanatory variable 

which represents the forecast revision of previous month. Thus the dependent variables consist of 

forecast revisions with maximum forecast horizons of 16 for corn and soybean, and 13 for wheat. 

In summary, the corn and soybean regressions comprise 464 ( = 29 years × 16 forecasts) 

observations, whereas the regressions for wheat have 377 ( = 29 years × 13 forecasts) 

observations. 

Table 2.1 shows the descriptive statistics for the USDA forecast revisions for all three 

commodities.8 The means of forecast revisions for corn and soybeans are slightly negative, at      

-0.81% and -1.59% respectively. The mean for wheat is slightly positive, at 0.13%. The medians 

for corn and wheat are zero, whereas for soybeans it is slightly negative (-0.41%). For the 

standard deviations, they are much larger for corn and soybeans (for which it exceeds 10%) than 

for wheat (6.45%). The range of revisions is largest for soybeans, from -48.84% to 75.69%. 

Revisions for corn range from -64.78% to 40.98%. The range for wheat is smallest, from             

-22.23% to 23.02%. 

                                                             
8 The summary statistics contain all forecast revisions which enter as the dependent variables, hence do not contain 
the earliest forecast revisions, which are only used as explanatory variables. 
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Figure 2.1 depicts the monthly standard deviations of these forecast revisions, displayed 

in order of diminishing forecast horizons. For all three commodities, the standard deviations 

exhibit a decreasing trend as the forecast horizons shorten. The revisions for early months tend to 

be larger than revisions for other months. Also, the magnitude of the final revision is typically 

larger than the ones of the preceding revisions. The largest final revisions occur for soybeans, 

and the smallest ones are observed for wheat. In addition, monthly standard deviations are 

generally greater for corn and soybeans than for wheat. It is clear from Figure 2.1 that the 

standard deviations of forecast revisions vary by forecast horizon, which implies that it is 

important to build error heteroscedasticity into the model. 

 

2.5 Estimation Methods 

The proposed model is estimated using Bayesian Markov Chain Monte Carlo (MCMC) 

methods. The method greatly facilitates dealing with both heteroscedasticity and autocorrelation. 

Another advantage of the Bayesian approach is that it yields full posterior distributions for the 

parameters of interest. It is particularly useful when researchers try to characterize the property 

of parameters with a skewed posterior, such as error variances. This section outlines the joint 

posterior distributions of the parameters of the model, the choice of priors for the parameters, 

and the steps in the MCMC iterations. 

To simplify the notations, the proposed regression system (2.14) is rewritten as: 

 𝑦𝑦𝑡𝑡,𝑛𝑛 =  𝒙𝒙𝑡𝑡,𝑛𝑛𝜷𝜷 + 𝑘𝑘𝑡𝑡,𝑛𝑛 − 𝜀𝜀𝑡𝑡,𝑛𝑛−1 + 𝜀𝜀𝑡𝑡,𝑛𝑛 (2.19) 

where 𝑦𝑦𝑡𝑡,𝑛𝑛 ≡ 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛, 𝒙𝒙𝑡𝑡,𝑛𝑛 ≡ [1 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1], 𝜷𝜷 ≡ [𝛼𝛼 𝛽𝛽]′. The matrix form of each panel 

is 
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 𝒚𝒚𝑡𝑡 = 𝒙𝒙𝑡𝑡𝜷𝜷 + 𝒘𝒘𝒌𝒌𝑡𝑡 + 𝒑𝒑𝜺𝜺𝑡𝑡 (2.20) 

where 𝒚𝒚𝑡𝑡 = [𝑦𝑦𝑡𝑡,1, … ,𝑦𝑦𝑡𝑡,𝑁𝑁−1]′, 𝒙𝒙𝑡𝑡 ≡ [𝒙𝒙𝑡𝑡,1, … , 𝒙𝒙𝑡𝑡,𝑁𝑁−1]′, 𝒌𝒌𝑡𝑡 = [𝑘𝑘𝑡𝑡,1, … ,𝑘𝑘𝑡𝑡,𝑁𝑁−1]′,9 and 𝜺𝜺𝑡𝑡 =

[𝜀𝜀𝑡𝑡,1, … , 𝜀𝜀𝑡𝑡,𝑁𝑁−1]′. 𝒘𝒘 is a matrix indicating the existence of elements in 𝒌𝒌𝑡𝑡 in each equation.10 And 

𝒑𝒑 is a matrix indicating the existence of elements in 𝜺𝜺𝑡𝑡 in each equation. Combining the panels 

for all 𝑡𝑡’s, the full system can then be written as 

 𝒀𝒀 = 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 + 𝑷𝑷𝑷𝑷 (2.21) 

Since there is a common intercept 𝛼𝛼, for identification purposes one of the shock terms must be 

restricted to zero. Hence, without loss of generality, we set 𝑘𝑘𝑇𝑇,1 to be zero, i.e., we assume that 

the final one-month forecast error only contains the forecaster’s own idiosyncratic error. 

Let Λ = {𝜷𝜷, {𝜎𝜎𝑛𝑛2}𝑛𝑛=1𝑁𝑁−1,𝜎𝜎2} denote the set of parameters of the proposed model. The joint 

posterior density of Λ is the following: 

 𝑝𝑝(Λ) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀)�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗| 𝜎𝜎𝑗𝑗2)
𝑗𝑗𝑡𝑡

∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽)𝑝𝑝(𝜎𝜎2)�𝑝𝑝(𝜎𝜎𝑗𝑗2)
𝑁𝑁−1

𝑗𝑗=1

 (2.22) 

where Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) is the distribution of 𝒀𝒀, which is multivariate normal. 𝜎𝜎2𝛀𝛀 is the 

covariance matrix generated by the idiosyncratic errors. Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽) is the prior distribution of 

𝜷𝜷, which is multivariate normal with mean 𝑴𝑴 and variance 𝑽𝑽. 

In order to obtain the likelihood function and the full posterior, we derive a Gibbs 

Sampler based on generalized least squares (GLS). We cannot directly obtain the distributions 

for each 𝑦𝑦𝑡𝑡,𝑛𝑛 because of the autocorrelations in the error terms. Thus the likelihood can only be 

                                                             
9 The use of i.i.d. shock components instead of actual shocks can greatly simplify the estimation process. Note that 
the actual shocks can always be reconstructed from the i.i.d. shock components using formula (2.17). 
10 Note that w is not an identity matrix. Based on formula (2.17), there are two 1’s in the rows representing forecasts 
with horizon greater than 12. 
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expressed as a multivariate normal with covariance 𝜎𝜎2𝛀𝛀. To calculate the conditional posterior 

density for 𝜎𝜎2, first note that the relationship between 𝜎𝜎2𝛀𝛀 and the idiosyncratic error vector 𝑷𝑷 is 

 𝜎𝜎2𝛀𝛀 = 𝐸𝐸[𝑷𝑷𝐄𝐄(𝑷𝑷𝐄𝐄)′] = 𝐸𝐸[𝑷𝑷𝑷𝑷𝑷𝑷′𝑷𝑷′] = 𝑷𝑷𝐸𝐸[𝑷𝑷𝑷𝑷′]𝑷𝑷′ = 𝜎𝜎2𝑷𝑷𝑷𝑷′ (2.23) 

Also, the location of the idiosyncratic error in each observation is uniquely determined by the 

indicator matrix 𝑷𝑷, which is a known matrix. Thus the conditional posterior density for 𝜎𝜎2 can be 

calculated based on premultiplying system (2.21) by 𝑷𝑷−1: 

 𝑷𝑷−1𝒀𝒀 = 𝑷𝑷−1𝑿𝑿𝜷𝜷 + 𝑷𝑷−1𝑾𝑾𝑾𝑾 + 𝑷𝑷 (2.24) 

Or 

 𝒀𝒀� = 𝑿𝑿�𝜷𝜷 + 𝑾𝑾�𝑾𝑾 + 𝑷𝑷 (2.25) 

where 𝒀𝒀� = 𝑷𝑷−1𝒀𝒀, 𝑿𝑿�=𝑷𝑷−1𝑿𝑿, 𝑾𝑾� = 𝑷𝑷−1𝑾𝑾. 

Conditionally conjugate priors are adopted in the present analysis. In particular, the priors 

chosen for the parameters are: 

 

𝜷𝜷~𝑁𝑁(𝑴𝑴,𝑽𝑽) 

𝜀𝜀𝑡𝑡,𝑛𝑛~𝑁𝑁(0,𝜎𝜎2) 

𝑘𝑘𝑡𝑡,𝑛𝑛~𝑁𝑁(0,𝜎𝜎𝑛𝑛2) 

𝜎𝜎,𝜎𝜎𝑛𝑛~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑒𝑒𝑒𝑒𝑈𝑈 (0,∞) 

(2.26) 

for 𝑛𝑛 = 1, … ,𝑁𝑁 − 1 and 𝑡𝑡 = 1, … ,𝑇𝑇 The prior distribution for the coefficient vector 𝜷𝜷 is 

multivariate normal with mean 𝑴𝑴 = [0 0]′ and covariance matrix 𝑽𝑽 = 1000𝑰𝑰2×2, where 𝑰𝑰2×2 is 

a 2×2 identity matrix. The prior mean of 𝜷𝜷 is chosen to be consistent with the null hypothesis of 

efficiency. The scale of the variance matrix 𝑽𝑽 is chosen to be large, so that the prior is non-

informative. In this way, the draws of 𝜷𝜷 are diffuse and widely spread around the mean zero. The 

uniform prior for the standard deviation parameters is chosen following Gelman (2006). This 
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prior is non-informative and can be viewed as a limit of the half-𝑡𝑡 family distributions, which is 

conditionally conjugate to the extent of more general folded-noncentral-𝑡𝑡 distributions.11 The 

error covariance matrix we proposed is flexible in the sense that we let the estimation process 

determine the value of the correlations. If these correlations do exist, the estimated 𝜎𝜎2 will be of 

comparable value of the variances of 𝑘𝑘𝑡𝑡,𝑛𝑛. Otherwise, if the forecasters’ own errors are tiny 

compared to the outside shocks, the estimation process will push the error variance estimate to 

the variance of 𝑘𝑘𝑡𝑡,𝑛𝑛, making 𝜎𝜎2 close to zero. The conditional posterior distributions for the 

parameters of the model are outlined in the Appendix. 

The MCMC iteration steps for the model can be summarized as follows: 

Step 1: Set up initial values for each parameter in the set Λ, as well as 𝑾𝑾(0) and 𝑷𝑷(0). 

Step 2: Given {𝑘𝑘𝑡𝑡,𝑛𝑛
(𝑖𝑖) , 𝜎𝜎2(𝑖𝑖)}, draw 𝜷𝜷(𝑖𝑖+1) from a multivariate normal distribution. 

Step 3: Given {𝜷𝜷(𝑖𝑖+1), 𝜎𝜎2(𝑖𝑖), {𝜎𝜎𝑛𝑛2}(𝑖𝑖),𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛

(𝑖𝑖) }, sequentially draw 𝑘𝑘𝑡𝑡,𝑛𝑛
(𝑖𝑖+1) from a normal 

distribution for each 𝑡𝑡 = 1, … ,𝑇𝑇 and 𝑛𝑛 = 1, … ,𝑁𝑁 − 1. 

Step 4: Given {𝜷𝜷(𝑖𝑖+1), 𝑾𝑾(𝑖𝑖+1)}, update 𝑷𝑷(𝑖𝑖+1), and draw 𝜎𝜎2(𝑖𝑖+1) from an inverse gamma 

distribution. 

Step 5: Given 𝑾𝑾(𝑖𝑖+1), sequentially draw 𝜎𝜎𝑛𝑛
2(𝑖𝑖+1) from an inverse gamma distribution for 

each 𝑛𝑛 = 1, … ,𝑁𝑁 − 1. 

Step 6: Set 𝑖𝑖 = 𝑖𝑖 + 1. 

                                                             
11 The uniform prior serves a better role than the weakly-informative inverse gamma (𝜖𝜖, 𝜖𝜖) prior distribution for the 
variance, where 𝜖𝜖 is a positive value close to zero. When using a gamma (𝜖𝜖, 𝜖𝜖) instead of the uniform prior to 
estimate the model, inferences are found to be very sensitive to the choice of 𝜖𝜖, because the value of estimated 
standard deviation parameters are quite small. In this way, the results from applying inverse gamma (𝜖𝜖, 𝜖𝜖) priors are 
less likely to be non-informative in the present study if 𝜖𝜖 is not small enough relative to the estimated variances. 
Importantly, similar results are found when employing inverse gamma (𝜖𝜖, 𝜖𝜖) priors with 𝜖𝜖 = 0.01 and 0.001. 
Moreover, there are no significant changes in the results when other forms of non-informative priors (e.g., 
𝜎𝜎,𝜎𝜎𝑛𝑛~𝑈𝑈(0,1000), 𝑒𝑒𝑒𝑒 𝜎𝜎2,𝜎𝜎𝑛𝑛2~𝑈𝑈(0,∞)) are applied. 
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Step 7: Repeat Step 2 until the maximum iteration is reached. 

For each commodity, the Gibbs Sampler is run for three Markov Chains for 100,000 

iterations each. The first half of each chain is discarded as a burn-in period. Gelman and Rubin 

(1992) test is then applied to check the convergence of the remaining part of the chains. The 

Gelman and Rubin test statistic compares the variances of both within the chains and between 

the chains. Values of the statistics close to 1 indicate convergence. 

 

2.6 Results and Discussion 

Estimation results for the USDA forecasts for the marketing years 1984/85 through 

2013/14 are summarized in Table 2.2 and 2.3.12 Gelman and Rubin (1992) test statistics are 

below 1.03 for all parameters for all three commodities, which strongly suggests convergence of 

the Markov Chains. Table 2.2 displays the means and standard deviations for the estimated 

parameters, including the intercept, slope, and the standard deviations of the idiosyncratic error 

and unforecastable shocks. Panel B reports the medians and 95% credible intervals of the 

corresponding parameters. The sequence of standard errors for the unforecastable shocks is 

displayed in the order of increasing forecast horizons. Specifically, 𝜎𝜎𝑛𝑛 is the standard deviation 

of the shock corresponding to the 𝑛𝑛-month forecast horizon. For example, for corn and soybeans, 

𝜎𝜎16 is the standard error of shocks with a 16-month horizon, i.e., between June and July for 

forecasts targeting the ending stocks of the following marketing year. 𝜎𝜎1 is the standard deviation 

of the shock corresponding to the final forecast revision, i.e., the final forecast error. For wheat, 

because there are only 13 shocks, 𝜎𝜎13 is the standard error of the earliest shocks, which is also 

                                                             
12 Estimation results for the constant and slope remain basically unchanged if (2.15) is used as the component in the 
error covariance matrix instead. The estimated variances of shocks, however, are different due to the correlation 
assumption on simultaneous forecasts. 
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between June and July for forecasts targeting the ending stocks of the following marketing year. 

It is worth noting that the estimated parameters can be compared among all three commodities, 

because forecast revisions are all measured in natural logarithms (i.e., percentage values). 

The point estimate of the intercept 𝛼𝛼 represents the bias of the USDA forecast revisions. 

For corn, it is positive and significant at the 5% level, suggesting that USDA forecast revisions 

have a tendency to be upwardly biased. The point estimate of 𝛼𝛼=0.5% indicates that the USDA 

revises its forecasts up by about 0.5% each month.13 When adding up the forecast revisions, it 

shows that the USDA has a tendency to underestimate the ending stocks. For example, although 

the estimate of α is small, it can be inferred that 𝑈𝑈𝑡𝑡,16, the forecast made in June for the ending 

stock of the following marketing year tends to underestimate the ending stock by an average of 

8% (= 0.5% × 16), which is no longer negligible. In other words, the positive and significant 

estimate of α shows that USDA forecasts of corn ending stocks are inefficient. 

The point estimate of 𝛼𝛼 for soybeans is -1.37%, the absolute value of which is more than 

twice as large as that for corn. The estimate is negative and significant, showing that on average 

the USDA adjusts its forecast down for about 1.37% each month. The finding also indicates that 

USDA has a tendency to overestimate the ending stocks. Specifically, it can be inferred that 

𝑈𝑈𝑡𝑡,16, the forecast made in June for the ending stock of the following marketing year, tends to 

overestimate the ending stock by an average of 21.92% (=1.37% × 16). It contributes to the 

inefficiency of the USDA soybean forecasts, but in an opposite way from forecasts of corn 

ending stocks. For wheat, the estimate is -0.11%. However, both the 90% and 95% credible 

intervals contain zero. Therefore we cannot reject the null hypothesis that USDA wheat forecasts 

revisions are conditionally unbiased. 
                                                             
13 Recall that forecast revisions are defined by 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛. 
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It is interesting to find opposite signs for the estimates of corn and soybean. One possible 

explanation of this finding is that corn and soybean are close substitutes in production. The 

increase in the acreage of planting one crop will typically result in decrease in the acreage of the 

other, as the total land use for these two crops are stable over a short period. Therefore, if the 

demand conditions are unchanged, the ending stocks will be affected in a similar way as 

productions. The USDA forecasts reflect this relationship. Thus, a positive bias in the USDA 

forecast revisions for corn is accompanied by a negative bias in its soybean forecasts. 

Coefficient 𝛽𝛽 measures the association between two adjacent USDA forecast revisions, 

accounting for the endogeneity of past revisions. Note that it is different from the coefficient in 

Nordhaus (1987) which assumes 𝑖𝑖. 𝑖𝑖.𝑑𝑑. residuals. For all three commodities, the point estimates 

of 𝛽𝛽 are positive and significant at the 5% level, indicating inefficient USDA forecasts. The 

estimate for corn is 18.37% on average, meaning that if USDA adjusts its forecast up by 1% in 

the past month, its forecast will also be revised up by roughly 0.18% in the current month, given 

other conditions fixed. The estimate for wheat is 18.84%, which is similar in size to that for corn. 

The estimate for soybeans is 51.37%, which is largest and almost triple the estimates for corn 

and wheat.  

Our findings show that the USDA is conservative in adjusting its ending stocks forecasts. 

In other words, the most recent USDA forecast does not fully represent the arrival of new 

information. It can also be argued that the USDA is more conservative to forecast ending stocks 

for soybean compared to corn and wheat, because the estimated association coefficient 𝛽𝛽 for 

soybean is the largest. The results are consistent with previous research that government agency 

have a tendency to smooth their forecasts. (e.g. Isengildina et al, 2006). 
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An interesting question to ask is: why is the USDA conservative in making ending stocks 

forecasts? Isengildina et al. (2006) summarized several reasons that could explain why 

government agencies smooth their forecasts. These reasons include predicting based on weather 

conditions, forming a weighted average forecast based on earlier forecasts and current estimates, 

strategic behavior, etc. They claimed that for USDA crop production forecasts, the smoothing 

comes from conservation of farm operators’ assessment and bias in using information. Ending 

stocks forecasts, however, are quite different from production forecasts. While production 

forecasts are generated based on surveys and satellite images, ending stocks forecasts are 

combinations of various forecasts of both demand and supply, which are inheritably more 

subjective. Vogel and Bange (1999) stated, “Throughout the growing season and afterwards, 

estimates are compared with new information on production and utilization, and historical 

revisions are made as necessary.” Therefore, the USDA may include past forecasts in forming 

new ending stocks forecasts, as the ending stocks forecasts require much more subjective 

analysis on the demand side of the balance sheet. In this way, a new forecast can possibly be a 

weighted average of earlier forecasts and current estimates. This method of averaging is widely 

used to generate forecasts in industry. 

Table 2.2 also displays the standard deviations of the monthly shocks. It can be seen that 

they tend to decrease as the forecast horizon shortens. The shocks are typically large for the first 

seven months of a forecasting cycle. This is because the production plans haven’t been fully 

revealed, adding another layer of uncertainty to the ending stocks forecasts. Later forecast 

revisions are mainly attributed to the demand side only, and hence shocks are typically smaller. 

For corn, the standard deviations of monthly shocks range from 1.56% to 24.58%. Large shocks 

are expected to arrive in revisions in pre-marketing year June/July (18.63%), pre-marketing year 
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July/August (24.58%), September/October (14.59%), and December/January (13.38%). Note that 

the December/January revision corresponds to the release of the final production forecast of that 

marketing year, and signals the end of the role of domestic production in USDA ending stocks 

forecasts. Shocks in February/March (1.71%) and May/June (1.56%) are the smallest and lower 

than the standard deviations of USDA idiosyncratic errors (1.84%). 

The standard deviations of monthly shocks for soybeans range from 1.93% to 19.87%. 

Compared to corn, the range is smaller and the lower bound is higher. Large shocks are expected 

in revisions in all of the first five months of the forecasting cycle from June to November. The 

September/October shock is largest at 19.87%, while the other four early shocks are at around 

13%. Note that September/October is also the time of the first revision of soybean production 

forecasts. Contrary to the case of corn, the December/January shock (4.58%) is not large 

compared to other early shocks. Interestingly, there are seven shocks which have standard 

deviations smaller than that of the USDA idiosyncratic errors (4.65%). 

For wheat, the standard deviations of shocks have a much narrower range, which is 

3.17% to 9.84%. Large shocks are expected in revisions occurring in June/July (9.11%), 

July/August (9.84%), and September/October (8.59%). The standard deviations of shocks are all 

larger than those of the USDA idiosyncratic errors. 

There is a jump in the standard deviations of final forecast revisions as it measures the 

difference between analysts’ final forecasts and the ending stocks, which is different in nature 

with other forecast revisions. The estimate is largest for soybeans (16.52%) and smallest for 

wheat (7.08%). For corn, the estimate is 8.65%. One explanation of this finding is that there 

might be unexpected large demand changes during the final month of the marketing year. 

Another reason is that the models used by the USDA may not take into account some important 
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information which can last for as long as the full forecasting cycle. Hence, when the final stocks 

are released, the information which is ignored will come out in a sudden, which is captured as 

shocks in the proposed model, resulting in typically large final revisions. 

The estimates of 𝜎𝜎 represent the standard deviations of USDA idiosyncratic errors. The 

point estimates are significantly greater than zero for all three commodities. The estimate for 

corn is 1.84% on average. The estimate for wheat is 1.31%, which is smallest. The estimate for 

soybeans is quite larger, at 4.65%. The estimated standard deviations of the idiosyncratic errors 

are larger than some estimates of the standard deviations of monthly shocks for corn and 

soybeans. The results validate our assumption on the existence of idiosyncratic errors, and they 

are not negligible compared to the unforecastable shocks. 

 

2.7 Conclusions 

We develop a framework to investigate the efficiency of USDA crop ending stocks 

forecasts based on the works of Clements et al. (2007), Nordhaus (1987) and Davies and Lahiri 

(1995, 1999). The proposed model analyzes adjacent forecast revisions with emphasis on the link 

between forecasts and the forecast target. The residuals are decomposed as the sum of monthly 

unforecastable shocks and USDA’s own idiosyncratic errors. The postulated error covariance 

matrix then exhibits heteroscedasticity (due to the unforecastable shocks), as well as 

autocorrelation (due to the idiosyncratic errors). 

We apply our estimation framework to USDA ending stocks forecasts for three major 

agricultural commodities - corn, soybeans and wheat. A total of 29 marketing years, from 

1985/86 to 2013/14 are investigated. Estimation is conducted by means of a Bayesian Markov 

Chain Monte Carlo (MCMC) approach. This method allows us to estimate the coefficients and 
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the error covariance matrix in the same iteration. The MCMC method also allows the parameters 

to vary freely, so that the estimation results can be used to validate the postulated structure of the 

residual covariance matrix. 

Results show that USDA forecasts are inefficient for all three commodities. Forecast 

revisions for corn and soybean are biased: the USDA has a tendency to underestimate the ending 

stocks for corn and overestimate the ending stocks for soybeans. We cannot reject the null 

hypothesis that USDA forecasts for wheat are unbiased. The slope coefficients for three 

commodities are all positive and significant, providing strong evidence against efficiency. The 

significantly positive slope estimates suggest that the USDA is conservative in adjusting its 

forecasts, and it might put a positive weight on its past forecasts. We also find that the 

unforecastable shocks are heteroscedastic. Shocks corresponding to early forecast revisions are 

typically large. The overall precision of shocks is smallest for soybeans and largest for wheat. 

Moreover, the USDA’s own idiosyncratic errors are not negligible compared to the 

unforecastable shocks. Especially for corn and soybeans, the variances of the idiosyncratic errors 

can be larger than the shocks for certain months. 

The estimation framework can be easily extended by adding other explanatory variables, 

such as macroeconomic variables or weather variables. Also, one can investigate the asymmetric 

impacts by decomposing the forecast revisions into positive and negative parts. Moreover, the 

framework can be easily applied to analyze other fixed-event forecasts as long as one can specify 

the correct error covariance matrix. 

Given that USDA forecasts are found to be inefficient, an interesting question worth 

exploring is whether there are any forecasters who can provide better forecasts. In recent years, 

private analysts have started to provide their own ending stocks forecasts. For crop productions, 
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Garcia et al. (1997) found a decline in the informational value of USDA forecasts. However, the 

comparisons between USDA and analysts’ forecasts have never been addressed before. Thus, it 

would be worth investigating whether analysts are efficient in forecasting ending stocks, and 

whether the analysts’ forecasts can improve upon USDA forecasts. 

 

2.8 References 

Adjemian, M.K. 2012. Quantifying the WASDE Announcement Effect. American Journal of 
Agricultural Economics. 94(1): 238-256. 

Allen, P.G. 1994. Economic Forecasting in Agriculture. International Journal of Forecasting 
10:81-135. 

Bauer, R.F., and P.F. Orazem 1994. The Rationality and Price Effects of U.S. Department of 
Agriculture Forecasts of Oranges. Journal of finance 49(2): 681-685. 

Botto, A.C., O.  Isengildina, S.H. Irwin, D.L. Good. 2006. Accuracy Trends and Sources of 
Forecast Errors in WASDE Balance Sheet Categories for Corn and Soybeans. Selected 
Paper prepared for presentation at the American Agricultural Economics Association 
Annual Meeting, Long Beach, California, July 23-26, 2006. 

Clements, M.P. 1995. Rationality and the Role of Judgement in Macroeconomic Forecasting. 
The Economic Journal. 105(429): 410-420. 

Clements, M.P. 1997. Evaluating the Rationality of Fixed-event Forecasts. Journal of 
Forecasting. 16:225-239. 

Clements, M.P., F. Joutz, and H.O. Stekler. 2007. An Evaluation of the Forecasts of the Federal 
Reserve: a Pooled Approach. Journal of Applied Econometrics. 22: 121-136. 

Davies, A., and K.Lahiri. 1995. A New Framework for Testing Rationality and Measuring 
Aggregate Shocks Using Panel Data. Journal of Econometrics 68: 205-227. 

Davies, A., and K.Lahiri. 1999. Re-examining the Rational Expectations Hypothesis Using Panel 
Data on Multi-period Forecasts. Analysis of Panels and Limited Dependent Variable 
Models, 226-254. Cambridge University Press. 

Egelkraut, T.M., P. Garcia, S.H. Irwin, and D.L. Good. 2003. An Evaluation of Crop Forecast 
Accuracy for Corn and Soybeans: USDA and Private Information Agencies. Journal of 
Agricultural and Applied Economics 35:79-95. 



www.manaraa.com

31 
 

 
 

Garcia, P., S. Irwin, R. Leuthold, and L. Yang. 1997. The Value of Public Information in 
Commodity Futures Markets. Journal of Economic Behavior and Organization 32(4): 
559-570. 

Gelman, A. 2006. Prior Distributions for Variance Parameters in Hierarchical Models (Comment 
on the Article by Browne and Draper). Bayesian Analysis 1(3):515-534.  

Gelman A. and D.B. Rubin. 1992. Inference from Iterative Simulation Using Multiple 
Sequences. Statistical Science. 7(4):457-472. 

Harvey, D.I., Leybourne, S.J., and Newbold, P. 2001. Analysis of a Panel of UK Macroeconomic 
Forecasts. Econometrics Journal. 4: 37-55. 

Irwin, S.H., M.E. Gerlow, and T.R. Liu. 1994. The Forecasting Performance of Livestock 
Futures Prices: A Comparison to USDA Expert Predictions. Journal of Futures Markets. 
14:861-875. 

Isengildina, O., S.H. Irwin, and D.L. Good. 2004. Evaluation of USDA Interval Forecasts of 
Corn and Soybean Prices. American Journal of Agricultural Economics. 86:990-1004. 

Isengildina O., S.H. Irwin, and D.L. Good. 2006. Are Revisions to USDA crop Production 
Forecasts smoothed. American Journal of Agricultural Economics. 88(4): 1091-1104. 

Isengildina-Massa, O., S.H. Irwin, D.L. Good, and J.K. Gomez. 2008a. The Impact of Situation 
and Outlook Information in Corn and Soybean Futures Markets: Evidence from WASDE 
Reports. Journal of Agricultural and Applied Economics 40(1):89-103. 

Isengildina-Massa, O., S.H. Irwin, D.L. Good, and J.K. Gomez. 2008b. Impact of WASDE 
Reports on Implied Volatility in Corn and Soybean Markets. Agribusiness 24(4): 473-
490. 

Isengildina-Massa, O., B. Karali, and S.H. Irwin. 2013. When do USDA forecasters make 
mistakes? Applied Economics 45(36): 5086–5103. 

Mincer, J. and V. Zarnowitz. 1969. The Evaluation of Economic Forecasts, in: J. Mincer (ed.) 
Economic Forecasts and Expectations. New York: National Bureau of Economic 
Research. 

Nordhaus , W.D. 1987. Forecasting Efficiency: Concepts and Applications. Review of Economics 
and Statistics 69:667-674. 

Romer, C.D., and D.H. Romer (2000). Federal Reserve Information and the Behavior of Interest 
rates, American Economic Review. 90(3): 429-457. 

Sanders, D.R., and M.R. Manfredo. 2002. USDA Production Forecasts for Pork, Beef, and 
Broilers: An Evaluation. Journal of Agricultural and Resource Economics. 27:114-128. 



www.manaraa.com

32 
 

 
 

Sanders, D.R., and M.R. Manfredo. 2003. USDA Livestock Price Forecasts: A comprehensive 
evaluation. Journal of Agricultural and Resource Economics, 28: 316–334. 

Vogel, F.A., and G.A. Bange. 1999. Understanding USDA Crop Forecasts. USDA miscellaneous 
publication No. 1554. 

 

2.9 Appendix 

Conditional Posterior Distributions for Model Parameters in the Gibbs Sampler 

The proposed model consists of system (2.21) and priors (2.25): 

 𝒀𝒀 = 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 + 𝑷𝑷𝚺𝚺  

 𝜷𝜷~𝑁𝑁(𝑴𝑴,𝑽𝑽)  

 𝜀𝜀𝑡𝑡,𝑛𝑛~𝑁𝑁(0,𝜎𝜎2) (2.A.1) 

 𝑘𝑘𝑡𝑡,𝑛𝑛~𝑁𝑁(0,𝜎𝜎𝑛𝑛2)  

 𝜎𝜎,𝜎𝜎𝑛𝑛~𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑒𝑒𝑒𝑒𝑈𝑈 (0,∞)  

for 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, 𝑡𝑡 = 1, … ,𝑇𝑇. Let 𝛀𝛀 ≡ 𝑷𝑷′𝑷𝑷. Given {𝜷𝜷,𝑾𝑾,𝜎𝜎2,𝛀𝛀}, the dependent variable 𝑦𝑦𝑡𝑡,𝑛𝑛 

follows a multivariate normal distribution: 

 𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀~𝑁𝑁(𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾,𝜎𝜎2𝛀𝛀) (2.A.2) 

and the likelihood is Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀). The posterior density of the set of model parameters is 

given by 

 𝑝𝑝(Λ) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀)�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗| 𝜎𝜎𝑗𝑗2)
𝑗𝑗𝑡𝑡

∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽)𝑝𝑝(𝜎𝜎2)�𝑝𝑝(𝜎𝜎𝑗𝑗2)
𝑁𝑁−1

𝑗𝑗=1

 (2.A.3) 

The conditional posterior density for 𝜷𝜷 is 

 𝑝𝑝(𝜷𝜷|Λ\𝜷𝜷) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) ∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽) (2.A.4) 

Hence: 
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𝜷𝜷|Λ\𝜷𝜷~𝑵𝑵((𝑿𝑿′𝛀𝛀−𝟏𝟏𝑿𝑿 𝜎𝜎2⁄ + 𝑽𝑽−1)−1(𝑿𝑿′𝛀𝛀−𝟏𝟏(𝒀𝒀 −𝑾𝑾𝑾𝑾) 𝜎𝜎2⁄

+ 𝑽𝑽−1𝑴𝑴), (𝑿𝑿′𝛀𝛀−𝟏𝟏𝑿𝑿 𝜎𝜎2⁄ + 𝑽𝑽−1)−1) 
(2.A.5) 

The conditional posterior density of 𝑘𝑘𝑡𝑡,𝑛𝑛, 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1 is 

 𝑝𝑝�𝑘𝑘𝑡𝑡,𝑛𝑛�Λ\𝑘𝑘𝑡𝑡,𝑛𝑛� = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) ∗ Φ(𝑘𝑘𝑡𝑡,𝑛𝑛| 𝜎𝜎𝑛𝑛2) (2.A.6) 

Therefore, 

 

𝑘𝑘𝑡𝑡,𝑛𝑛|Λ\𝑘𝑘𝑡𝑡,𝑛𝑛 

~𝑁𝑁(
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛

′ 𝛀𝛀−𝟏𝟏�𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛� 𝜎𝜎2⁄

𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛
′ 𝛀𝛀−𝟏𝟏𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛

𝜎𝜎2⁄ + 1 𝜎𝜎𝑛𝑛2⁄
,

1
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛

′ 𝛀𝛀−𝟏𝟏𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛
𝜎𝜎2⁄ + 1 𝜎𝜎𝑛𝑛2⁄

) 
(2.A.7) 

where 𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛 is the column of 𝑾𝑾 which indicates the monthly shock 𝑘𝑘𝑡𝑡,𝑛𝑛, and 𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛 , 𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛 are 

matrices with the column indicating 𝑘𝑘𝑡𝑡,𝑛𝑛 deleted from 𝑾𝑾,𝑾𝑾, respectively. 

The conditional posterior density of 𝜎𝜎𝑛𝑛2, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1 is 

 𝑝𝑝(𝜎𝜎𝑛𝑛2|Λ\𝜎𝜎𝑛𝑛2) = �Φ(𝑘𝑘𝑡𝑡,𝑛𝑛| 𝜎𝜎𝑛𝑛2)
𝑁𝑁

𝑗𝑗=1

∗ 𝑝𝑝(𝜎𝜎𝑛𝑛2) (2.A.8) 

Thus 

 𝜎𝜎𝑛𝑛2|Λ\𝜎𝜎𝑛𝑛2~𝐼𝐼𝐼𝐼((𝑇𝑇 − 1) 2⁄ ,�𝑘𝑘𝑡𝑡,𝑛𝑛
2

𝑇𝑇

𝑡𝑡=1

2� ) (2.A.9) 

Finally, the conditional posterior of 𝜎𝜎2 is 

 𝑝𝑝(𝜎𝜎2|Λ\𝜎𝜎2) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) ∗ 𝑝𝑝(𝜎𝜎2) (2.A.10) 

so that 

 𝜎𝜎2|Λ\𝜎𝜎2~𝐼𝐼𝐼𝐼((𝑇𝑇𝑁𝑁 − 1) 2⁄ , (𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾𝑾𝑾)′𝛀𝛀−𝟏𝟏(𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾𝑾𝑾) 2⁄ ) (2.A.11) 
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Figure 2.1. Standard deviations of USDA forecast revisions, by month. 

 

 

 

Table 2.1. Descriptive statistics for USDA forecast revisions. 

 Mean Median St. Dev. Min Max 
      

Corn -0.0081 0.0000 0.1073 -0.6478 0.4098 
      

Soybeans -0.0159 -0.0041 0.1153 -0.4884 0.7569 
      

Wheat 0.0013 0.0000 0.0645 -0.2223 0.2302 
      

Note: summary statistics are displayed in logarithms. 
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Table 2.2. Means and Standard Deviations for the estimates of USDA ending stocks forecasts, 1985/86 – 2013/14. 

Parameter Corn Soybean Wheat 
Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) 

       
Coefficient       
𝛼𝛼 (intercept) 0.0050 (0.0023)** -0.0137 (0.0028)** -0.0011  (0.0028) 
𝛽𝛽 (slope) 0.1837 (0.0382)** 0.5137 (0.0478)** 0.1884  (0.0694)** 

       
Shock       
𝜎𝜎1 0.0865 (0.0129) 0.1652 (0.0248) 0.0708 (0.0106) 
𝜎𝜎2 0.0319 (0.0079) 0.0755 (0.0138) 0.0344 (0.0078) 
𝜎𝜎3 0.0399 (0.0083) 0.0418 (0.0162) 0.0317 (0.0081) 
𝜎𝜎4 0.0709 (0.0109) 0.0418 (0.0143) 0.0448 (0.0083) 
𝜎𝜎5 0.0156 (0.0089) 0.0193 (0.0136) 0.0309 (0.0085) 
𝜎𝜎6 0.0521 (0.0090) 0.0633 (0.0152) 0.0422 (0.0080) 
𝜎𝜎7 0.0845 (0.0127) 0.0393 (0.0163) 0.0628 (0.0105) 
𝜎𝜎8 0.0171 (0.0087) 0.0195 (0.0136) 0.0535 (0.0090) 
𝜎𝜎9 0.0523 (0.0089) 0.0423 (0.0157) 0.0323 (0.0086) 
𝜎𝜎10 0.1338 (0.0194) 0.0458 (0.0200) 0.0859 (0.0128) 
𝜎𝜎11 0.0563 (0.0097) 0.0542 (0.0176) 0.0685 (0.0108) 
𝜎𝜎12 0.0766 (0.0121) 0.1365 (0.0229) 0.0984 (0.0144) 
𝜎𝜎13 0.1459 (0.0211) 0.1987 (0.0314) 0.0911 (0.0144) 
𝜎𝜎14 0.0870 (0.0150) 0.1325 (0.0246)   
𝜎𝜎15 0.2458 (0.0351) 0.1321 (0.0238)   
𝜎𝜎16 0.1863 (0.0267) 0.1214 (0.0228)   

       
Idiosyncratic Err.       

𝜎𝜎 0.0184 (0.0027) 0.0465 (0.0032) 0.0131  (0.0062) 
Note: (*) and (**) denote parameter estimates significant at 10% and 5%, respectively. The standard errors for the idiosyncratic error 
and shocks are all significant at 5% level, and hence the indicators are omitted.
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Table 2.3. Medians and Credible Intervals for the estimates of USDA ending stocks forecasts, 1985/86 – 2013/14 

Parameter Corn Soybean Wheat 
2.5% Median 97.5% 2.5% Median 97.5% 2.5% Median 97.5% 

          
Coefficient          
𝛼𝛼 (intercept) 0.0009 0.0049 0.0098 -0.0191 -0.0137 -0.0082 -0.0066 -0.0011 0.0046 
𝛽𝛽 (slope) 0.1063 0.1848 0.2561 0.4212 0.5139 0.6060 0.0700 0.1822 0.3367 

          
Shock          
𝜎𝜎1 0.0654 0.0851 0.1157 0.1244 0.1625 0.2216 0.0534 0.0696 0.0949 
𝜎𝜎2 0.0164 0.0316 0.0484 0.0516 0.0743 0.1058 0.0178 0.0346 0.0494 
𝜎𝜎3 0.0249 0.0395 0.0577 0.0072 0.0423 0.0732 0.0129 0.0321 0.0464 
𝜎𝜎4 0.0529 0.0698 0.0958 0.0118 0.0420 0.0698 0.0291 0.0444 0.0621 
𝜎𝜎5 0.0007 0.0160 0.0328 0.0008 0.0170 0.0500 0.0108 0.0316 0.0462 
𝜎𝜎6 0.0364 0.0513 0.0718 0.0355 0.0626 0.0955 0.0271 0.0419 0.0586 
𝜎𝜎7 0.0635 0.0832 0.1131 0.0061 0.0397 0.0712 0.0437 0.0621 0.0854 
𝜎𝜎8 0.0013 0.0175 0.0337 0.0008 0.0176 0.0498 0.0374 0.0529 0.0730 
𝜎𝜎9 0.0370 0.0515 0.0720 0.0095 0.0428 0.0730 0.0103 0.0331 0.0475 
𝜎𝜎10 0.1017 0.1317 0.1776 0.0043 0.0467 0.0842 0.0643 0.0847 0.1146 
𝜎𝜎11 0.0396 0.0555 0.0775 0.0189 0.0541 0.0892 0.0497 0.0676 0.0922 
𝜎𝜎12 0.0564 0.0754 0.1037 0.0981 0.1343 0.1877 0.0746 0.0969 0.1309 
𝜎𝜎13 0.1110 0.1437 0.1932 0.1461 0.1957 0.2693 0.0659 0.0900 0.1226 
𝜎𝜎14 0.0619 0.0855 0.1204 0.0902 0.1304 0.1863    
𝜎𝜎15 0.1879 0.2421 0.3253 0.0916 0.1299 0.1847    
𝜎𝜎16 0.1425 0.1835 0.2464 0.0816 0.1197 0.1715    

          
Idiosyncratic Err.          

𝜎𝜎 0.0130 0.0185 0.0237 0.0407 0.0464 0.0531 0.0038 0.0125 0.0260 
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CHAPTER 3 

THE ENDING STOCKS FORECASTS FROM PRIVATE ANALYSTS: 

AN EXAMINATION OF EFFICIENCY 

 

3.1 Abstract 

This paper examines the efficiency of private analysts’ ending stocks forecasts for corn, 

soybeans and wheat for marketing years 2004/05 through 2013/14. The model proposed in 

Chapter 2, which focuses on adjacent forecast revisions while retaining the link between the 

forecasts and the ending stocks, is applied. This paper also investigates individual analysts’ 

forecasts after filling the missing data points using multiple imputations. Results show that 

private analysts, as a group, are inefficient in making ending stocks forecasts for all three 

commodities. Analysts are also found to have similar forecasting behavior as the USDA for corn 

and soybeans. Moreover, estimations show that forecasting behavior varies across individual 

analysts. 

 

3.2 Introduction 

Ending stocks are a measure of the unutilized quantity of the commodity at the end of a 

marketing year. Entering into the market in the following marketing year, ending stocks can 

serve as reserve against unexpected supply and demand shocks in the commodity market. They 

are major indicators of the supply of the commodity, and have great impact on the price volatility 

and market participants’ decision makings. As the United States is a major exporting country for 

agricultural commodities like corn, soybeans and wheat, the impact of stocks changes is much 

larger than for other countries in the global market. Therefore, the public has paid close attention 
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to the U.S. ending stocks level. The provision of accurate forecasts of ending stocks becomes 

extremely important because it can timely reflect the market situation and reduce the uncertainty 

faced by decision makers. In other words, it can significantly reduce the market risk and enhance 

the overall functioning of the commodity market. 

For several decades, the U.S. Department of Agriculture (USDA) has provided ending 

stocks forecasts for major agricultural commodities in its monthly World Agricultural Supply 

and Demand Estimates (WASDE) reports. As released by the government agency, the forecasts 

in the WASDE reports are highly credited for their integrity and incorporation of comprehensive 

information. WASDE forecasts have been paid substantial attention by policy makers and 

various market participants, including farmers and agribusinesses. Researchers also find that 

decisions and behaviors of these participants have been adjusted following the update of the 

WASDE forecasts (e.g., Bauer and Orazem 1994, Garcia et al. 1997, Isengildina-Massa et al. 

2008a, 2008b, Adjemian 2012). 

Recently, a new group of forecasters, private analysts, has arisen due to the reduced 

difficulty and cost of acquiring related information. A greater number of analysts has started to 

provide crop ending stocks forecasts over the past few years. Although private analysts have the 

same forecast target as the USDA, their forecasts are different. Specifically, their sources of 

information need not overlap with or be as comprehensive as those from the USDA. For 

example, crop-production related surveys conducted by the private sector may not cover as many 

farmers as those done by the USDA. This could possibly be due to costs or time issues. Also, 

those farmers who participate in the surveys from the private sector may differ from those who 

participate in USDA surveys. Secondly, although private analysts and the USDA may share 

some common information such as satellite maps or macroeconomic conditions, their 



www.manaraa.com

39 
 

 
 

interpretation and inference might not be the same because they are performed by different 

analysts. Thirdly, it is possible that the objective of private analysts is distinct from that of the 

USDA. This could happen because some private analysts themselves are actively involved in the 

market and even pursue profit by directly trading the commodity. Thus, one would expect their 

forecasts to be more or less affected by their own trading objectives and strategies. On the other 

hand, USDA forecasts are widely considered to be objective because of the policy of the 

government agency and the goal for enhancing the functioning of agricultural markets as a public 

service. 

Many researchers have investigated the effect of the rise of the private forecasts. For 

example, French et al. (1989) find that relatively large differences between the consensus 

analysts’ forecasts and the forecasts from government agencies often lead to market volatility. 

Studies also find that analysts’ start to compete with government agencies. In the case of crop 

output forecasts, Garcia et al. (1997) found a decline in the informational value of USDA 

forecasts as the private sector started to provide its own forecasts. Egelkraut et al. (2003) found 

that private agencies can compete with the USDA in making forecasts for several specific 

months. Further, Fortenbery and Sumner (1993) found that markets no longer react to USDA 

production forecasts, whereas McKenzie (2008) arrived at the opposite conclusion that futures 

prices continue to react to the USDA reports. Given the aforementioned findings, it is interesting 

to study the performance of private analysts as competitors to the USDA, especially in forecasts 

of crop ending stocks, which have been overlooked by the literature. 

U.S. ending stocks forecasts are fixed-event forecasts because they are made for a 

specific target (the ending stocks), but have different forecast horizons. Previous research on 

fixed-event forecasts has often examined macroeconomic variables such as inflation rate, interest 
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rate, and GDP growth rates. (e.g., Clements 1995, 1997, Romer and Romer 2000, Harvey et al. 

2001, Clements et al. 2007) There are also some studies which focus on agricultural fixed-event 

forecasts such as USDA production forecasts (Sanders and Manfredo, 2002; Isengildina et al. 

2006) and USDA ending stocks forecasts ( Botto et al., 2006; Isengildina-Massa et al., 2013). 

Previous models regarding efficiency of fixed-event forecasts can generally be 

categorized into two main strands. The first strand, which is based on Nordhaus (1987), builds on 

forecast revisions. Nordhaus (1987) introduced a weak efficiency test which only uses 

information on past forecasts because the forecast history is always available to public. The test 

consists of identifying the relationship of adjacent forecast revisions. However, the model’s 

assumption of i.i.d. errors need not to be realistic, as it cuts off the inherent relationship between 

forecasts and the forecast target. In contrast, the second strand, which is advocated by Davies and 

Lahiri (1995, 1999), directly focuses on forecast errors. They decompose the forecast errors as 

the sum of unforecastable shocks and the forecaster’s own idiosyncratic errors. Based on their 

work, Clements et al. (2007) analyzed forecast revisions by differencing the forecast errors. In 

this way, they can avoid possible problems in the original Davies and Lahiri model, which are 

generated by the correlations between the dependent variables and the residuals. However, for 

estimation purposes, they did not use the postulated theoretical structure of the covariance 

matrix. Instead, they adopted a simplified version of it. 

The proposed the model in Chapter 2 further extends the Clements model by 

investigating adjacent forecast revisions with emphasis on the link between the forecasts and the 

forecast target. The model in Chapter 2 combined the Nordhaus (1987) and Davies and Lahiri 

(1995, 1999) approaches and developed a comprehensive test to analyze forecast efficiency. In 

particular, the model builds an error covariance matrix which takes into account both the 
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heteroscedasticity of the unforecastable shocks and the autocorrelations generated by the 

forecaster’s correction of their own errors. The model implies that the existence of forecaster’s 

own idiosyncratic errors will lead to negative correlations between adjacent forecast revisions if 

forecasts are efficient. This correlation structure serves as the link between the forecasts and the 

forecast target – the ending stocks. The model was applied to USDA ending stocks forecasts of 

corn, soybeans and wheat for marketing years 1985/86 – 2013/14. Results show that the USDA 

forecasts are inefficient and there is strong evidence that the USDA is conservative in making 

ending stocks forecasts. 

The present study applies the model in Chapter 2 to explore whether private analysts’ 

forecasts of ending stocks are efficient. The analysis focuses on three major agricultural 

commodities, namely, corn, soybeans and wheat. A total of 10 marketing years, 2004/05 – 

2013/14, are investigated. As ending stocks forecasts from private analysts have similar 

forecasting schedules as those from the USDA, the error covariance matrix developed in Chapter 

2 can also be used in describing the error structure of private analysts’ forecasts. We form four 

representative analysts with different combinations of the analysts’ forecast data and analyze the 

efficiency of their forecasts. 

Private analysts’ forecasts, like other data in social sciences, are often incomplete. This 

problem of missing data needs to be addressed in order to study the forecasts from individual 

analysts. Rubin (1976) proposes that there exist several types of missingness. The ideal type is 

missing completely as random (MCAR). Under MCAR, the data can be viewed as a subsample 

of the complete dataset. However, this assumption is too strong for most of the real-world 

datasets. The missing data can also be ignored under a less restrictive assumption: missing at 

random (MAR). Past researchers developed methods like listwise deletion and pairwise deletion 
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to discard the observations or variables which are incomplete. But these methods typically yield 

biased estimates even under MAR (e.g., Arbuckle 1996, Wothke 2000). Besides, sometimes it 

results in insufficient data for researchers to use. Thus, recent studies have started to focus on 

data imputation in order to utilize the information in the incomplete observations which would 

otherwise have been discarded. Early imputation methods are typically single imputations, 

including hot deck imputations, mean imputations, regression imputations, etc. However, these 

methods ignore the uncertainty generated by the missing data. Hence, Rubin (1987) proposed a 

method of averaging the estimates from multiple imputed datasets. The method introduced 

certain degrees of randomness to the imputations to account for the uncertainty in predicting the 

missing data.  

The present study also examines the forecasting behavior of individual analysts, the data 

of which are incomplete. We use a multiple imputation method, developed by Honaker and King 

(2010), to generate complete datasets for analysis. The method is designed specifically for time-

series cross-section datasets, taking into account for various characteristics such as smooth time 

trends, correlations over time and space, etc. The imputed values are thus more accurate 

compared to previous imputation methods. We then develop an approach to use the imputed 

datasets in our estimation procedures. 

The estimation is performed by a Bayesian Markov Chain Monte Carlo (MCMC) 

method. The method is particularly useful in analyzing the proposed model structure because it 

allows us to estimate the coefficients and the error covariance matrix in one iteration step. We 

adopt conjugate priors for estimations. These priors contain no subjective information so that the 

data dominates the estimation processes. In this way, the method developed can also serve as a 

justification of the model proposed structure. Moreover, the MCMC method allows us to 
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examine the full posterior distributions for the parameters of interest, especially for the variances 

of the errors on which the distributional assumptions are not normal. 

The rest of the paper is organized as follows. Section 3.3 introduces the model for 

investigating the efficiency of private analysts’ ending stocks forecasts. Section 3.4 describes the 

data and explains the proposed way of forming representative analysts. Section 3.5 introduces 

the MCMC method employed for the estimation and the approach used to integrate the imputed 

individual analysts’ datasets into the estimation procedures. Section 3.6 describes the results and 

implications, and the final section concludes. 

 

3.3 The Model 

Chapter 2 introduced a model of evaluating fixed-event forecasts by focusing on forecast 

revisions instead of forecast errors, while retaining the link between the forecasts and the target 

event. The model is developed to deal with the issues generated by the endogeneity after the 

introduction of complex error covariance structures. 

To apply the model to the private analysts’ forecasts, let 𝑆𝑆𝑡𝑡 be the realization of the 

ending stock of a given commodity at the end of marketing year 𝑡𝑡. Let 𝑛𝑛 be the forecast horizon 

and 𝑉𝑉𝑡𝑡𝑡𝑡 be the representative analyst’s 𝑛𝑛-month ahead forecast of the ending stock 𝑆𝑆𝑡𝑡. Based on 

Davies and Lahiri (1995, 1999), forecast errors can be evaluated by the following regression: 

 𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑡𝑡 = 𝑛𝑛𝑛𝑛 + �𝑘𝑘𝑡𝑡,𝑗𝑗

𝑡𝑡

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡,𝑡𝑡 (3.1) 

where 𝑛𝑛 represents the bias of the forecast revisions, 𝑘𝑘𝑡𝑡,𝑗𝑗~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎𝑗𝑗2) represents the shock of 

month 𝑗𝑗 of the forecasting cycle for marketing year 𝑡𝑡, and 𝜀𝜀𝑡𝑡,𝑡𝑡~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎2) is the 

representative analyst’s own idiosyncratic error. Thus 𝑛𝑛𝑛𝑛 is the full bias of the forecast error of 
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𝑉𝑉𝑡𝑡,𝑡𝑡, and ∑ 𝑘𝑘𝑡𝑡,𝑗𝑗
𝑡𝑡
𝑗𝑗=1  can be interpreted as the aggregate shock between forecast month 𝑛𝑛 and the 

time of the revelation of the ending stock. 

Given the structure of (3.1), Chapter 2 suggests applying first differencing as in Clements 

et al. (2007) to consider the forecast revisions instead of the forecast errors. Forecast revisions 

are more convenient for the econometric analysis than forecast errors, because the later contain 

information from later periods, which is not closely related to the information available when the 

current forecasts are made. Thus these pieces of future information can be safely excluded from 

the model. The link between the forecasts and the ending stocks, however, is still retained by the 

idiosyncratic errors. First-order differencing of (3.1) gives 

 

⎩
⎨

⎧
𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,1 = 𝑛𝑛 + 𝑘𝑘𝑡𝑡,1 +𝜀𝜀𝑡𝑡,1
𝑉𝑉𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,2 = 𝑛𝑛 + 𝑘𝑘𝑡𝑡,2 −𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2

⋮
𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁 = 𝑛𝑛 + 𝑘𝑘𝑡𝑡,𝑁𝑁 −𝜀𝜀𝑡𝑡,𝑁𝑁−1 + 𝜀𝜀𝑡𝑡,𝑁𝑁

 (3.2) 

where 𝑁𝑁 is the maximum forecast horizon for a marketing year. 

The efficiency test based on (3.2) consists of fitting 

 

⎩
⎨

⎧
𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,1 = 𝑛𝑛 + 𝛽𝛽𝑋𝑋𝑡𝑡,1 + 𝑘𝑘𝑡𝑡,1 +𝜀𝜀𝑡𝑡,1
𝑉𝑉𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,2 = 𝑛𝑛 + 𝛽𝛽𝑋𝑋𝑡𝑡,2 + 𝑘𝑘𝑡𝑡,2 −𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2

⋮
𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁 = 𝑛𝑛 + 𝛽𝛽𝑋𝑋𝑡𝑡,𝑁𝑁 + 𝑘𝑘𝑡𝑡,𝑁𝑁 −𝜀𝜀𝑡𝑡,𝑁𝑁−1 + 𝜀𝜀𝑡𝑡,𝑁𝑁

 (3.3) 

where 𝑋𝑋𝑡𝑡,𝑡𝑡’s represent explanatory variables which contain available information at the time the 

forecast 𝑉𝑉𝑡𝑡,𝑡𝑡 is made. Efficiency can then be examined by testing the null hypothesis 𝐻𝐻0: 𝑛𝑛 =

𝛽𝛽 = 0. The representative analyst’s forecasts 𝑉𝑉 are said to be efficient under the null hypothesis, 

meaning that the revisions cannot be predicted using available information. 
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One reasonable candidate for 𝑋𝑋𝑡𝑡,𝑡𝑡 is the representative analyst’s most recent forecast 

revision 𝑉𝑉𝑡𝑡,𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑡𝑡+1, because it represents the most up-to-date information and is always 

available. Substituting 𝑋𝑋𝑡𝑡,𝑡𝑡 for 𝑉𝑉𝑡𝑡,𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑡𝑡+1, regression (3.3) becomes 

 

⎩
⎨

⎧
𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,1 = 𝑛𝑛 + 𝛽𝛽(𝑉𝑉𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,2) + 𝑘𝑘𝑡𝑡,1 +𝜀𝜀𝑡𝑡,1
𝑉𝑉𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,2 = 𝑛𝑛 + 𝛽𝛽(𝑉𝑉𝑡𝑡,2 − 𝑉𝑉𝑡𝑡,3) + 𝑘𝑘𝑡𝑡,2 −𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2

⋮
𝑉𝑉𝑡𝑡,𝑁𝑁−2 − 𝑉𝑉𝑡𝑡,𝑁𝑁−1 = 𝑛𝑛 + 𝛽𝛽(𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁) + 𝑘𝑘𝑡𝑡,𝑁𝑁 −𝜀𝜀𝑡𝑡,𝑁𝑁−1 + 𝜀𝜀𝑡𝑡,𝑁𝑁

 (3.4) 

The last equation in (3.3) is dropped as there are no past revisions associated to the earliest 

forecast revision. However, the inclusion of most recent forecast revisions as explanatory 

variables brings out an endogeneity problem if the regression is estimated equation by equation, 

because the forecast revisions appear both as dependent variables and explanatory variables. 

Specifically, there exist correlations between the revisions and the idiosyncratic errors. To 

address the problem, Chapter 2 proposes estimating the parameters by recognizing the equations 

as a system. The earliest forecast revisions are treated as exogenous, while the remaining 

revisions are then treated as endogenous. 

The model also introduces a covariance matrix with a minimal number of parameters to 

be estimated. Without loss of generality, the data can be sorted by increasing forecast horizon 

𝑛𝑛 = 1, … ,𝑁𝑁. Take corn for example. Based on Chapter 2, the error covariance structure of a 

typical marketing year can be characterized as 
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𝐵𝐵(𝑁𝑁−1)×(𝑁𝑁−1)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎1

2 + 𝜎𝜎2 −𝜎𝜎2 0 … 0 0 0 0
−𝜎𝜎2 𝜎𝜎22 + 2𝜎𝜎2 −𝜎𝜎2 0 0 0

0 −𝜎𝜎2 ⋱ 0 0
⋮ ⋱ 0
0 𝜎𝜎𝑁𝑁−42 + 2𝜎𝜎2 ⋮
0 0 𝜎𝜎𝑁𝑁−32 + 2𝜎𝜎2 −𝜎𝜎2 0
0 0 0 −𝜎𝜎2 𝜎𝜎𝑁𝑁−22 + 2𝜎𝜎2 −𝜎𝜎2

0 0 0 0 … 0 −𝜎𝜎2 𝜎𝜎𝑁𝑁−12 + 𝜎𝜎2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(3.5) 

The diagonal elements represent the total error variances. It can be seen that the differences are 

contributed by the heteroscedastic shocks. The subdiagonal elements, as well as the 

superdiagonal, are the negative of the variances of the idiosyncratic errors. They represent the 

autocorrelations between adjacent equations, which also serve as the link between forecasts and 

the forecast target - the ending stocks. 

Moreover, there exist correlations between forecasts made at the same month but for 

different marketing years. Thus the 𝑖𝑖. 𝑖𝑖.𝑑𝑑. assumption imposed on the monthly shocks associated 

with these forecasts might no longer be realistic. Instead, the monthly shocks with horizons 

greater than 12 are redefined as 𝑘𝑘�𝑡𝑡+1,𝑡𝑡+12, where 

 𝑘𝑘�𝑡𝑡+1,𝑡𝑡+12 = 𝑘𝑘𝑡𝑡,𝑡𝑡 + 𝑘𝑘𝑡𝑡+1,𝑡𝑡+12 for 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 − 12 (3.6) 

Thus, 𝑘𝑘�𝑡𝑡+1,𝑡𝑡+12 contains the shock in the current marketing year 𝑘𝑘𝑡𝑡,𝑡𝑡 and the shock 𝑘𝑘𝑡𝑡+1,𝑡𝑡+12 

which solely affects the ending stock in the next marketing year. In this way, the covariance 

between 𝑘𝑘�𝑡𝑡+1,𝑡𝑡+12 and 𝑘𝑘𝑡𝑡,𝑡𝑡 is 𝜎𝜎𝑡𝑡2. Let 𝜎𝜎�𝑡𝑡+122  be the variance of forecasts with horizon greater than 12. 

Then 

 𝜎𝜎�𝑡𝑡+122 = 𝜎𝜎𝑛𝑛+12
2 + 𝜎𝜎𝑛𝑛2 (3.7) 

For corn and soybean forecasts, the error covariance matrix then becomes 
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𝐵𝐵�(𝑁𝑁−1)×(𝑁𝑁−1)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎1

2 + 𝜎𝜎2 −𝜎𝜎2 0 … 𝜎𝜎12 0 0 0
−𝜎𝜎2 𝜎𝜎22 + 2𝜎𝜎2 −𝜎𝜎2 𝜎𝜎22 0 0

0 −𝜎𝜎2 ⋱ 𝜎𝜎32 0
⋮ ⋱ 𝜎𝜎42

𝜎𝜎12 𝜎𝜎�𝑁𝑁−42 + 2𝜎𝜎2 ⋮
0 𝜎𝜎22 𝜎𝜎�𝑁𝑁−32 + 2𝜎𝜎2 −𝜎𝜎2 0
0 0 𝜎𝜎32 −𝜎𝜎2 𝜎𝜎�𝑁𝑁−22 + 2𝜎𝜎2 −𝜎𝜎2

0 0 0 𝜎𝜎42 … 0 −𝜎𝜎2 𝜎𝜎�𝑁𝑁−12 + 𝜎𝜎2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(3.8) 

To see the structure of the full error covariance matrix, note that without loss of 

generality, we can sort the data first by marketing year 𝑡𝑡 = 1, … ,𝑇𝑇, and then by forecast horizon 

𝑛𝑛 = 1, … ,𝑁𝑁. Then the covariance matrix of the error terms can be expressed as a 𝑇𝑇(𝑁𝑁 − 1) ×

𝑇𝑇(𝑁𝑁 − 1) block diagonal matrix: 

 Σ = �
𝐵𝐵�

𝐵𝐵�
𝐵𝐵�

𝐵𝐵�

�

𝑇𝑇×𝑇𝑇

 (3.9) 

 

3.4 Data 

3.4.1 Data Sources and Structure 

The model is applied to data on U.S. ending stocks and their corresponding private 

analysts’ monthly forecasts, for three major agricultural commodities – corn, soybeans and 

wheat. A total of 10 marketing years, from 2004/05 through 2013/14, are investigated in the 

present study. The forecasts from the USDA within the same period are also analyzed as 

comparisons. 

U.S. ending stocks are obtained from the Grain Stocks Report released by the National 

Agricultural Statistics Services (NASS). The Grain Stocks Report is published quarterly, 
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typically in early January, and late March, June, September. As the U.S. marketing year for corn 

and soybeans starts in September and ends in August of the following calendar year, we retrieve 

the final ending stocks from the September report – the first report after the ending of the U.S. 

marketing year. For wheat, the U.S. marketing year starts in June and ends in May of the 

following calendar year. Thus, the wheat ending stocks are obtained from the June report. 

The USDA monthly forecasts are retrieved from the WASDE reports. They are used as 

benchmarks to which private analysts’ forecasts are compared. For each marketing year, the first 

USDA forecast for corn and soybeans is released in May before the marketing year begins. The 

last forecast is released in early September, after the ending of the marketing year but before the 

release of the ending stock. Thus there are 17 forecasts in a forecasting cycle for corn and 

soybeans. For wheat, there are 14 forecasts instead, with the first one released in May, together 

with that for corn and soybeans, and the last released in June of the following calendar year. 

The private analysts’ forecast data have the same format as the USDA data. Analysts’ 

forecasts obtained from the monthly Survey of U.S. Grain and Soybeans Carryout Forecasts 

conducted by Dow Jones Commodities Services. It is worth noting that the surveys are typically 

released a few days before the release of the WASDE reports. Hence, there could be differences 

between private analysts’ forecasts and their USDA counterpart, as the information used to 

generate them might not be the same. 

As discussed in the previous section, the first forecast of each marketing year can only be 

used to construct an explanatory variable (i.e., for the second revision). Thus for corn and 

soybeans, the dependent variable consists of only 16 forecast revisions, which yields 160 (=16 

forecasts × 10 marketing years) observations in the regression system. For wheat, the dependent 
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variable consists of 13 revisions and the regression system has 130 (=16 forecasts × 10 

marketing years) observations. 

 

3.4.2 Creating a Representative Analyst 

Private analysts’ forecasts are often incomplete, as they are not required by policies or 

laws to provide consecutive forecasts every month. Private analysts’ forecasts sometimes are 

missing due to various reasons. For example, an analyst may fail to respond to the survey on 

time. On the other hand, there might also be some issues in collecting analysts’ responses to the 

survey, resulting in missing data points for those analysts. 

When examining the private analysts’ forecasts, we find another reason that caused the 

data points to appear missing: business changes. A private analyst may stop providing forecasts 

if the company ceases its business in research or trading in commodities and their derivatives, or 

shifts its business focus to other areas not related to forecasting. Also, due to the rapid 

development in the agribusiness industry, many new forecasters emerged over the past decade. 

These forecasters typically have missing data points in early periods of the marketing years 

examined in this study. 

We investigated the background of all private forecasters in the Survey of U.S. Grain and 

Soybeans Carryout Forecasts. We combine forecasts from several analysts due to business 

merges, who were identified as separate forecasters in the original data. Take the ABN Amro / 

Fortis case for example. Most parts of business of ABN Amro, including commodity services, 

were taken over by Fortis in 2007. Later Fortis began providing its own ending stocks forecasts. 

We also find in the data that the time when ABN Amro stopped forecasting and Fortis started 

forecasting matched perfectly. Thus, we are able to combine these two forecasters into a single 
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one. Similar cases applied to Alaron, which was acquired by PFGBest in 2009, and A.G. 

Edwards & Sons, which was acquired by Wachovia Securities in 2007. The final dataset, 

therefore, contains 54 analysts who provide at least one forecast during the 10 marketing years 

investigated. 1 

It is also worthwhile to look at the forecasts which are provided by analysts who have 

few missing observations. We define frequent forecasters as those analysts who provide forecasts 

for more than 60% of the time.2 These analysts are typically large companies which have been in 

the industry for a long time, for example, Allendale, Citigroup, US Commodities, etc. As these 

businesses may have more resources to collect data and perform analysis than other forecasters, 

it is interesting to see whether their forecasts have different patterns and if these differences 

exist, how they differ. For corn and soybeans, we have identified 10 analysts as frequent 

forecasters. For wheat, 9 analysts have been viewed as frequent forecasters. The names and 

number of forecasts of these analysts are reported in Table 3.1. 

The present model utilizes the following four combinations of analysts’ data as the 

representatives of analysts’ forecasts: 

AA: The average of analysts’ forecasts 

MA: The median of analysts’ forecasts 

AFA: The average of selected frequent analysts’ forecasts 

MFA: The median of selected frequent analysts’ forecasts 

                                                           
1 There is a special case for which we are able to find the date when the two businesses merged, but the two firms 
have overlapping forecasts. In this case, we still treat the two businesses as separate analysts because there could be 
some unidentified reasons resulting in such overlap. 
2 The threshold of 60% is selected not only for the number of available observations, but also based on the missing 
patterns. For example, an analyst who reports slightly less than 60% but did not forecast in the first 4 marketing 
years is not considered as a frequent forecaster. In the present study, we try to select analysts whose forecasts span 
the whole 10 marketing years. 



www.manaraa.com

51 
 

 
 

We choose the average of analysts’ forecasts (AA) as a representative because it is widely 

accepted by the public as a benchmark of consensus analysts’ forecasts. The median of analysts’ 

forecasts (MA) is chosen because the number of analysts who offer forecasts varies for each 

month. Hence, the median is more likely to be more stable if there exist outliers.3 The same 

rationales apply to the mean and median of the selected frequent analysts’ forecasts. As 

comparisons, the USDA forecasts are also estimated using the same model, as they are viewed as 

the “official” forecasts by the public. 

 

3.4.3 Individual Analysts’ Forecasts 

The present study also investigates the efficiency of individual analysts’ forecasts. We 

apply the estimations to the forecasts from the selected frequent analysts, that is, 10 analysts for 

corn and soybeans, and 9 analysts for wheat. The data from other analysts’ are not analyzed 

because of the high level of missingness, which would otherwise introduce too much uncertainty 

to the estimations. We then use a method of multiple imputations to fill the missing data points 

of these analysts’ forecasts. The details and the estimations steps are discussed together in 

Section 3.4. 

 

3.4.4 Descriptive Statistics 

Table 3.2 shows the descriptive statistics for the four representative analysts’ forecast 

revisions and the USDA counterpart for all three commodities.4 5 The overall means are not 

significantly different from zero for all three commodities. The overall medians are also zero or 
                                                           
3 In other words, the median of analysts’ forecasts can be more credible as consensus if some analysts made 
forecasts with large deviations from the majority. 
4 The earliest forecast revisions are also included in calculating the descriptive statistics. 
5 The statistics for the individual analysts’ forecasts are omitted due to space limits. 
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close to zero. The standard deviations are much larger for corn and soybeans than for wheat. For 

corn, the five sets of data show that forecast revisions range from approximately -60% to 40%. 

The AA and AFA data have both lower upperbounds and lower lowerbounds. The MA and MFA 

data have both higher upperbounds and higher lowerbounds. For soybeans, the USDA forecast 

revisions range from -38.30% to 75.69%. The range for the analysts’ forecasts are quite different. 

The AA and MA data have both higher upperbounds and higher lowerbounds, whereas the AFA 

and MFA data have lower upperbounds and lower lowerbounds. For wheat, the USDA data have 

smaller range, at -16.48% to 18.63%. The ranges for the four representative analysts’ datasets are 

quite similar and larger, at around -20% to 24%. 

Figure 3.1 depicts the monthly standard deviations of the forecast revisions. The 

sequences are displayed in the order of diminishing forecast horizons. It can be seen from the 

figure that for all three commodities, the standard deviations exhibit a general decreasing trend 

as the forecast horizons shorten. Besides, there is a jump in the standard deviations for the final 

revisions for all forecasts data. It can also be seen that standard deviations of forecast revisions 

are greater for corn and soybeans stocks than for wheat stocks. 

 

3.5 Estimation Methods 

3.5.1 Estimation Procedures for Representative Analysts’ Forecasts 

The model is estimated using a Bayesian Markov Chain Monte Carlo (MCMC) method, 

as it greatly facilitates dealing with an error structure characterized by both heteroscedasticity 

and autocorrelation. In this section, we first outline the joint posterior distributions of the 

parameters, and then introduce the choice of prior for each parameter. Finally, we list the steps in 

the MCMC estimation procedures. 
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To simplify the notation, we rewrite the proposed regression system as: 

 𝑦𝑦𝑡𝑡,𝑡𝑡 =  𝒙𝒙𝑡𝑡,𝑡𝑡𝜷𝜷 + 𝑘𝑘𝑡𝑡,𝑡𝑡−1 − 𝜀𝜀𝑡𝑡,𝑡𝑡−1 + 𝜀𝜀𝑡𝑡,𝑡𝑡 (3.10) 

where 𝑦𝑦𝑡𝑡,𝑡𝑡 ≡ 𝑉𝑉𝑡𝑡,𝑡𝑡−1 − 𝑉𝑉𝑡𝑡,𝑡𝑡, 𝒙𝒙𝑡𝑡,𝑡𝑡 ≡ [1 𝑉𝑉𝑡𝑡,𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑡𝑡+1], 𝜷𝜷 ≡ [𝑛𝑛 𝛽𝛽]′. Then the matrix form of panels 

of regressions for each marketing year is, 

 𝒚𝒚𝒕𝒕 = 𝒙𝒙𝒕𝒕𝜷𝜷 + 𝒘𝒘𝒌𝒌𝒕𝒕 + 𝒑𝒑𝜺𝜺𝒕𝒕 (3.11) 

where 𝒚𝒚𝒕𝒕 = [𝑦𝑦𝑡𝑡,1, … ,𝑦𝑦𝑡𝑡,𝑁𝑁−1]′, 𝒙𝒙𝑡𝑡 ≡ [𝒙𝒙𝑡𝑡,1, … ,𝒙𝒙𝑡𝑡,𝑁𝑁−1]′, 𝒌𝒌𝒕𝒕 = [𝑘𝑘𝑡𝑡,1, … , 𝑘𝑘𝑡𝑡,𝑁𝑁−1]′, and 𝜺𝜺𝒕𝒕 =

[𝒆𝒆𝑡𝑡,1, … , 𝒆𝒆𝑡𝑡,𝑁𝑁−1]′. 𝒘𝒘 is a matrix indicating the existence of elements in 𝒌𝒌𝒕𝒕 in each corresponding 

equation. And 𝒑𝒑 is a matrix indicating the existence of elements in 𝜺𝜺𝒕𝒕 in each corresponding 

equation. The full system can then be written as 

 𝒀𝒀 = 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 + 𝑷𝑷𝑷𝑷 (3.12) 

where each character represents the vector containing the same character with subscripts 𝑡𝑡 =

1, … ,𝑇𝑇. For identification purposes, 𝑘𝑘𝑇𝑇,1 is set to be zero, as there is a common intercept 𝑛𝑛 to be 

estimated. In other words, we assume that the final forecast error in marketing year 𝑇𝑇 only 

contains the representative analyst’s own idiosyncratic error. 

Let Λ = {𝜷𝜷, {𝜎𝜎𝑡𝑡2}𝑡𝑡=1𝑁𝑁−1,𝜎𝜎2} be the set of the parameters of the proposed model. The joint 

posterior density of Λ is 

 𝑝𝑝(Λ) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀)�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗| 𝜎𝜎𝑗𝑗2)
𝑗𝑗𝑡𝑡

∗ 𝑝𝑝(𝜷𝜷)𝑝𝑝(𝜎𝜎2)�𝑝𝑝(𝜎𝜎𝑗𝑗2)
𝑁𝑁−1

𝑗𝑗=1

 (3.13) 

Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) is the distribution of 𝒀𝒀, which is multivariate normal. 𝜎𝜎2𝛀𝛀 is the covariance 

matrix generated by the idiosyncratic errors. 𝑝𝑝(𝜷𝜷) is the prior distribution of 𝜷𝜷. 𝑝𝑝(𝜎𝜎2) is the 

prior distribution of the representative analyst’s idiosyncratic errors.  𝑝𝑝(𝜎𝜎𝑗𝑗2) is the prior 

distribution of the shocks of month 𝑗𝑗. 
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To calculate the posterior distribution for each parameter, a Gibbs Sampler is derived 

based on general least squares. We use conditionally conjugate priors for the estimations. 

Specifically, the priors chosen for the parameters are: 

 

𝜷𝜷~𝑁𝑁(𝑴𝑴,𝑽𝑽) 

𝜀𝜀𝑡𝑡,𝑡𝑡~𝑁𝑁(0,𝜎𝜎2) 

𝑘𝑘𝑡𝑡,𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝑡𝑡2) 

𝜎𝜎,𝜎𝜎𝑡𝑡~𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (0,∞) 

(3.14) 

for 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, 𝑡𝑡 = 1, … ,𝑇𝑇. The prior distribution for the coefficient vector 𝜷𝜷 is 

multivariate normal with mean 𝑴𝑴 = 𝟎𝟎2 and covariance matrix 𝑽𝑽 = 1000𝑰𝑰2×2, where 𝟎𝟎2 is a 

2×1 vector of zeros and 𝑰𝑰2×2 is a 2×2 identity matrix. Thus the posterior of 𝜷𝜷 also follows a 

multivariate normal distribution. The prior mean of 𝜷𝜷 is chosen to be consistent of the null 

hypothesis of efficiency. The scale of variance is chosen to be large so that the prior is non-

informative. In this way, the draws of 𝜷𝜷 will be diffused and widely spread around the mean 

zero. The uniform prior for the standard deviation parameters is chosen following Gelman 

(2006). This prior is non-informative and can be viewed as a limit of the half-𝑡𝑡 family 

distributions, which is conditionally conjugate to the extent of more general folded-noncentral-𝑡𝑡 

distributions. The posterior of the standard deviation parameters follows an inverse gamma 

distribution, a family of folded-noncentral-𝑡𝑡 distributions. The details of the conditional posterior 

distributions for the parameters of the model are outlined in the Appendix. 

The MCMC iteration steps for the model can be summarized as follows: 

Step 1: Set up initial values for each parameter in the set Λ, as well as 𝑾𝑾(0) and 𝑷𝑷(0). 

Step 2: Given {𝑘𝑘𝑡𝑡,𝑡𝑡
(𝑖𝑖) , 𝜎𝜎2(𝑖𝑖)}, draw 𝜷𝜷(𝑖𝑖+1) from a multivariate normal distribution. 
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Step 3: Given {𝜷𝜷(𝑖𝑖+1), 𝜎𝜎2(𝑖𝑖), {𝜎𝜎𝑡𝑡2}(𝑖𝑖),𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛

(𝑖𝑖) }, sequentially draw 𝑘𝑘𝑡𝑡,𝑡𝑡
(𝑖𝑖+1) from a normal 

distribution for each 𝑡𝑡 = 1, … ,𝑇𝑇 and 𝑛𝑛 = 1, … ,𝑁𝑁 − 1. 

Step 4: Given {𝜷𝜷(𝑖𝑖+1), 𝑾𝑾(𝑖𝑖+1)}, update 𝑷𝑷(𝑖𝑖+1), and draw 𝜎𝜎2(𝑖𝑖+1) from an inverse gamma 

distribution. 

Step 5: Given 𝑾𝑾(𝑖𝑖+1), sequentially draw 𝜎𝜎𝑡𝑡
2(𝑖𝑖+1) from an inverse gamma distribution for 

each 𝑛𝑛 = 1, … ,𝑁𝑁 − 1. 

Step 6: Set 𝑖𝑖 = 𝑖𝑖 + 1. 

Step 7: Repeat Step 2 until the maximum iteration is reached. 

For each dataset, the Gibbs Sampler is run for three Markov Chains for at most 80,000 

iterations each.6 The first half of each chain is discarded as a burn-in period. Gelman and Rubin 

(1992) tests are then applied to check the convergence of the remaining part of the chains. The 

Gelman and Rubin test statistic compares the variances of both within the chains and between 

the chains. Values of the statistics close to 1 indicate convergence. 

 

3.5.2 Integration of Multiple Imputation and MCMC Estimations 

Because of the missing values, additional steps need to be included in order to utilize the 

individual analysts’ forecast data. For the selected frequent analysts’ forecasts, we use multiple 

imputations to fill the missing data points, thus creating a list of full datasets. The imputation is 

performed using the Amelia II package in R. The Amelia II package is developed by Honaker et 

al. (2014), with the imputation method based on Honaker and King (2010). The method is 

designed specifically for imputing time-series cross-section datasets, and it contains features 

                                                           
6 The lengths of the Markov Chains are different for different datasets. This is because for some datasets the chains 
converge quickly, so that it is not necessary to run additional iterations. 
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which are not considered in standard multiple imputation methods, such as smooth time trend, 

correlations over time and space, etc. 

The method proposed by Honaker and King (2010) assumes that the complete data 

follow a multivariate normal distribution. However, this condition is commonly not satisfied for 

social science data. Thus data transformations are necessary to obtain more accurate imputation 

results. For the crop ending stocks forecasts, we make the following transformations so that the 

transformed data follow a distribution closer to multivariate normal: 

 𝑇𝑇𝑈𝑈𝑇𝑇𝑛𝑛𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑑𝑑 𝐹𝐹𝑈𝑈𝑈𝑈𝑇𝑇𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡 = 𝑙𝑙𝑛𝑛
𝑂𝑂𝑈𝑈𝑖𝑖𝑂𝑂𝑖𝑖𝑛𝑛𝑇𝑇𝑙𝑙 𝐹𝐹𝑈𝑈𝑈𝑈𝑇𝑇𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡
𝐸𝐸𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑂𝑂 𝑆𝑆𝑡𝑡𝑈𝑈𝐹𝐹𝑘𝑘

 (3.15) 

The transformed forecasts are thus the percentage deviations from the ending stocks. 

The imputation method also assumes that the missing data is MAR. To make this 

assumption more plausible, we include two additional variables to increase the predictive power 

of the imputations.7 In particular, we include the average forecasts of all analysts, which serve as 

the information from other analysts’ forecasts. We also include the USDA forecasts, which 

represent the information from another source – the government agency. Both included variables 

are complete, so that the package can fully utilize this additional information. 

Based on Rubin (1987), only a few imputations are sufficient enough to generate valid 

and accurate imputed values. Typically, researchers choose 3 to 10 imputations for their datasets. 

In the present study, as there are at most 40% missing observations of the selected frequent 

analysts’ forecasts, we generate 10 imputed datasets so that pooling estimates can be more stable. 

To aggregate the estimated results from the multiple imputed datasets, Rubin (1987) suggested a 

simple averaging and calculate the standard errors based on within-imputation variance and 

                                                           
7 The MAR assumption cannot be tested in this study as the test requires information form the missing part of the 
data (Schafer and Graham 2002). Thus we can only to try to make the assumption more plausible. 
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between-imputation variance. However, it cannot be directly applied to the Bayesian MCMC 

simulations employed in the present study. Hence, we propose a method to directly use the 

simulated Markov Chains to compute the estimated mean values and the credible intervals. 

Our integrated method of imputation and estimation is described as follows. To analyze 

an individual analyst’s forecasts, we first transform the original data for imputations. Then, the 

imputed data are transformed back so that they can be used in the estimation process. We then 

run 3 Markov Chains for each of the 10 imputed datasets, using the iteration steps introduced in 

the previous section. The 3 chains have different starting values for each parameter, but have the 

same sets of starting values for each imputed dataset. The Gibbs Sampler is run for 40,000 

iterations for each Markov Chain. The first half of each chain is then discarded as a burn-in 

period. We then combine the remaining half of the chains from all the imputed datasets with 

same starting values, creating 3 aggregated chains with 200,000 (= 40,000 / 2 observations × 10 

datasets) iterations each. Finally, we apply Gelman and Rubin (1992) test statistics to check the 

convergence of the aggregated chains. A graphical illustration of the process is depicted in 

Figure 3.4. 

 

3.6 Results and Discussion 

3.6.1 Representative Analysts and USDA Forecasts 

Tables 3.3 – 3.6 summarize the estimation results of the parameters for the five sets of 

data. The means and standard deviations for the estimated coefficients, shocks and idiosyncratic 

errors are reported in Table 3.3 (corn), Table 3.4 (soybeans), and Table 3.5 (wheat). The 

sequence of standard deviations for the shocks is displayed in order of increasing forecast 

horizons.  Table 3.6 reports the medians and 95% credible intervals of the constants and slopes 
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for the five sets of data for all three commodities. The Gelman and Rubin (1992) test statistics 

are below 1.03 for all parameters in all datasets, strongly suggesting convergence of the Markov 

Chains. 

 

Corn 

The point estimate of the intercept 𝑛𝑛 represents the bias of the forecast revisions. For the 

AA, AM, FAA data, the estimates are all positive but insignificant. Thus we cannot reject the 

null hypothesis that the representative analysts’ forecast revisions are unbiased. The estimates of 

𝑛𝑛 for the FAM data are positive and significant at 10% level, indicating that the FAM 

representative analyst slightly revises its forecasts up each month, and hence the revisions are 

weakly biased. 

Coefficient 𝛽𝛽 measures the association between two adjacent forecast revisions given the 

error covariance structure. The estimates for the slope 𝛽𝛽 for the four sets of data are all positive 

and significant at 5% level. The estimated 𝛽𝛽 is at around 16% for the AA and AM data. It is 

slightly lower, at 15.21% on average, for the FAA data. The estimate is much higher for the 

FAM data, at 20.29% on average. The results show that if the representative analyst adjusts its 

forecast up by 1% in the past month, its forecast will also be revised by 0.15% - 0.2%8 in the 

current month. Thus the findings show that analysts are conservative in adjusting their ending 

stocks forecasts for corn. In other words, the most recent forecast does not necessarily fully 

represent the arrival of new information. Instead, it can be viewed as a weighted average of the 

new information and the previous forecast. 

                                                           
8 The exact number depends on the dataset used. 
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The magnitudes of shocks are similar for the four representative analysts. Specifically, 

the results show that analysts typically exhibit relatively large shocks in the first two months. 

Besides, there is a jump in the magnitude of shock in the final month. The estimated standard 

deviations of the idiosyncratic errors are similar for the AA, AM, FAA data, at around 2.5% on 

average. It is larger, at 3.19% on average, for the FAM data. It is also worthwhile to note that the 

estimated standard deviations of the idiosyncratic errors are larger than those of the shocks of 

August/September (𝜎𝜎2), providing evidence that the idiosyncratic errors are not negligible. 

 

Soybeans 

The estimates of the intercept 𝑛𝑛 are quite similar for the four representative analysts. In 

particular, the estimates are all negative, at around -1.5%, and significant at the 5% level. This 

bias indicates that the representative analysts constantly revise their forecasts down by roughly 

1.5% per month on average. Thus the analysts have a tendency to overestimate the soybeans 

ending stocks. 

The point estimates of 𝛽𝛽 are around 50% for all four analysts samples. They are all 

significant at the 5% level, serving as strong evidence that analysts’ forecasts are inefficient. In 

other words, it can be argued that analysts’ typically retain about 50% of the informational value 

of their own previous forecasts. As this magnitude is much higher than that for corn, analysts are 

said to be more conservative in adjusting their forecasts. 

The estimates of the standard deviations of shocks are similar across the four analyst 

samples. The ranges are from roughly 4% to 31%. It can be found that shocks are expected to be 

large during September/October (𝜎𝜎13) and during the final revisions. They are observed to be 

larger for soybeans than for corn. The estimates of the standard deviations of the idiosyncratic 
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errors are slightly more than 7% for all four analyst samples. They are also larger than those for 

corn forecasts. 

 

Wheat 

Results are quite different for analysts’ forecasts of wheat ending stocks. The estimates of 

𝑛𝑛 are not significantly different from zero for the AA, AM, FAM data. Thus there isn’t enough 

evidence that these representative analysts’ forecasts are biased. However, for the FAA data, the 

estimate of 𝑛𝑛 is -0.94% on average and significant at 5% level, indicating that the forecasts are 

biased downward. That is to say, the FAA representative analyst tends to overestimate the ending 

stocks, adjusting its forecasts down by about 1% each month. 

The estimates of the slope 𝛽𝛽 are all positive for the four datasets. For the AA and AM 

data, the point estimates are 21.16% and 24.63% respectively, both significantly greater than 

zero at 5% level. The findings indicate that analysts, as a group, are conservative in forecasting 

ending stocks. Thus their forecasts are inefficient. For the FAA and FAM data, although the 

estimates are positive, they are not significantly different from zero. Thus there is not enough 

evidence that the representative analysts are conservative in making forecasts. 

The estimates of the standard deviations of shocks are similar across the four samples. 

The ranges are roughly 1% to 11%. Large shocks typically come in June/July (𝜎𝜎13), July/August 

(𝜎𝜎12), September/October (𝜎𝜎10), and the final revisions. However, the sizes are much smaller 

compared to those for corn and soybeans. The estimate of the standard deviations of 

idiosyncratic errors is smallest for the AA data, at 0.89% on average, and largest for the FAM 

data, at 2% on average. The estimates for the AM and FAA data are similar, at around 1.3% on 

average.  



www.manaraa.com

61 
 

 
 

Comparisons with USDA forecasts 

The estimates for the USDA forecasts from marketing years 2004/05 to 2013/14 are also 

displayed in tables 3.3 – 3.6 for comparisons. For corn, the estimates of the constants and slopes 

are very close between the analysts’ data and the USDA data. Specifically, we don’t find enough 

evidence that USDA forecasts are biased at 5% significance level. The USDA forecasts are 

inefficient due to positive and significant association between adjacent forecasts revisions. There 

are some differences in the estimated standard deviations of the shocks, but in general they 

follow the same patterns. The estimated standard deviations of the USDA idiosyncratic errors are 

smaller, at 2.06% on average. In other words, USDA are more precise in making ending stocks 

forecasts than the private analysts. 

Similar conclusions apply to the USDA and analysts’ soybeans forecasts. In particular, 

the estimates show that USDA forecasts are also biased downward. The USDA tends to be 

conservative in adjusting its forecasts, as the estimated slope coefficient is at 56.32% on average, 

which is positive and significant at the 5% level. The estimates for the standard deviations of the 

shocks are generally close for the two types of forecasters. And the estimated standard deviation 

of idiosyncratic errors of the USDA forecasts is at 6.36% on average, about 1% smaller than 

analysts’ forecasts. 

Results are substantially different for wheat forecasts. There is not enough evidence that 

USDA forecasts are inefficient. However, the representative analysts’ forecasts in the AA, AM, 

FAA data are all found to be inefficient. Although efficiency cannot be rejected for the FAM 

representative analysts’ forecasts, there exist some differences in the average of the estimated 

coefficients and parameters in the error covariance matrix. 
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3.6.2 Individual Analysts’ Forecasts 

Figure 3.5 – 3.7 show graphical results of the estimated intercepts (𝑛𝑛) and slopes (𝛽𝛽) for 

the selected frequent analysts’ forecasts, as well as thee 95% credible intervals of the estimates.9 

The Gelman and Rubin test statistics are all below 1.03, strongly suggesting the convergence of 

the aggregated Markov Chains. 

For corn forecasts, it can be seen that the estimated intercepts are not significantly 

different from zero for any of the 10 analysts’ forecasts. Thus, we cannot find bias in the 

individual analysts’ forecasts. The situation is different for the estimated slopes, as 2 of them are 

positive and significant at the 5% level, indicating inefficiencies for the forecasts from these two 

analysts. Results are different for soybeans forecasts. Estimated intercepts for 9 analysts are 

found negative and significant at the 5% level. We also find that the estimated slopes for 7 

analysts are positive and significant at the 5% level, and one slope is positive and significant at 

the 10% level. For wheat forecasts, there is only one analyst who has negative and significant 

intercept. The estimated slopes for the 9 analysts are all insignificant. 

Results show that there exists diversity in analysts’ forecasting behaviors. This diversity 

can be attributed to a number of factors, such as the data sources and the forecasting models. It 

can also come from the subjective opinions of the analysts. We can divide these analysts into two 

distinct groups based on how close their forecasting patterns are to that of the USDA. Take corn 

for example. There are 8 analysts whose forecasts are found efficient. The remaining 2 analysts 

are found inefficient in forecasting the ending stocks. However, these 2 analysts have similar 

forecast behaviors as the USDA. For soybeans, there are 7 analysts whose forecasting behaviors 

                                                           
9 The estimated parameters for the error covariance matrix – the standard deviations of unforecastable shocks (𝜎𝜎𝑡𝑡2) 
and the idiosyncratic errors (𝜎𝜎2) - are omitted to save space. 
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are close to the USDA. And for wheat, the number is 8. This finding shows that some analysts 

are able to capture the forecasting behavior of the USDA, because their forecasts are typically 

released before the USDA does. More subjectively, it is possible that these analysts have 

incorporated the USDA forecasts into their forecasting models. Thus, they may try to make 

forecasts as close as possible to the upcoming USDA forecasts. These arguments, however, 

cannot be applied to the analysts who are found to be efficient in forecasting the ending stocks 

but are different from the USDA. However, the forecasts from these analysts can be considered 

“good” forecasts because they fully reveal the new information, and the forecasts cannot be 

predicted from their own history. 

 

3.6.3 Discussion 

Occurrence of shocks 

As discussed in the previous section, for all three commodities, the estimated standard 

deviations of shocks exhibit differences between private analysts’ and USDA forecasts. A 

natural question arises is that: as shocks are from the outside environments and are common 

information to both groups of forecasters, why do the differences exist in their estimated 

magnitudes? The answers to this question can be separated into two types of explanations: the 

objective and the subjective. 

Objective explanations come from the time schedule of these forecasts. Note that USDA 

typically publishes its forecasts during the 9th – 14th of each month. Private analysts’ forecasts 

are finalized and collected several days before the release of the USDA forecasts. Graphical 

illustrations of the forecast timings are presented in Figure 3.8 for corn and soybeans and Figure 

3.9 for wheat. The time interval between a consensus analysts’ forecast and its corresponding 
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USDA forecast is almost one week, which is not negligible compared to the time interval 

between two own forecasts. Thus, if there happen to be some disturbances during the interval 

between analysts’ and USDA forecasts, these disturbances can be observed differently by the 

analysts and the USDA. Specifically, for the private analysts, the disturbances would be 

allocated to the next shock because analysts have already made their forecasts. In contrast, the 

disturbances for the USDA are allocated to the current shock, as the USDA has not finalized its 

forecasts yet. In this way, the different allocations of such disturbances result in different 

observations of shocks. Thus, the estimated standard deviations of these shocks could be 

different for private analysts and the USDA. 

Subjective explanations come from the measurements of the shocks. We can assume, 

without loss of generality, that private analysts and the USDA do not necessarily have the same 

measurements when facing the same shocks. There are two reasons which can possibly lead to 

this result. First, the data sources can be different for the two groups of forecasters. For example, 

in early months where production has not been finalized, the surveys conducted by the USDA 

and private analysts may cover different subjects. As the shock may affect these farmers 

differently, the observance of the shocks will also be different. Besides, the survey sample size 

matters as well, because the calculated population characteristics are highly related to the sample 

characteristics. Thus, the estimated shocks will be different for the two groups of forecasters if 

different survey sample sizes have been employed. Secondly, this finding can also result from 

different models or mathematical methods applied by these forecasters. Examples include, but 

also not limited to, quantifications of deviations of weather benchmarks, and estimations of a 

sudden demand shock. It is worthwhile to note that these disagreements about shocks are not the 
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forecasters’ own idiosyncratic errors. In the present study, the latter are separated based on the 

forecaster’s corrections of such errors. 

 

Forecasting Behaviors 

Results show that the USDA is inefficient in forecasting the ending stocks for corn and 

soybeans. But for wheat, there isn’t enough evidence to reject the null hypothesis of efficiency 

for USDA forecasts. The results also show that private analysts, as a group, have similar 

forecasting behaviors as the USDA for corn and soybeans, and distinct forecasting behaviors for 

wheat. These results are interesting when we also take into account the findings in Chapter 2 that 

the USDA is conservative in making ending stocks forecasts for these three commodities during 

a larger time span of 29 marketing years. Different from other fixed-event forecasts, ending 

stocks forecasts are inherently more subjective because they are combinations of various 

components in both the demand and supply side. Thus it might not be enough to provide a good 

forecast by only considering the deterministic components, i.e., the market conditions or other 

outside information. Instead, forecasters will likely add additional autoregressive terms to 

partake some weights in their forecasting process. For example, past forecasts can serve as prior 

means to current forecasts. This helps “stabilize” the forecasts, resulting in the positive estimated 

slopes in our study. As Litterman (1986) pointed out in his research, the inclusion of 

autoregression can provide forecasts which are “as accurate, on average, as those used by the 

best known commercial forecasting services”. This method has also been advanced in the past 

few decades and is widely adopted in generating forecasts. It is also interesting to look at the 

wheat ending stocks forecasts. The USDA might have “improved” its forecasts, so that although 

the estimated slope is positive, it is no longer significant for the more recent 10 years data, while 
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in Chapter 2, the estimate is positive and significant for 29 years data. However, it is possible 

that private analysts, as a group, did not detect the change in USDA forecasting behaviors. 

Therefore, analysts ending stocks for wheat, like for corn and soybeans, are still conservative. 

 

3.7 Conclusions 

We applied the model in Chapter 2 to investigate the efficiency of private analysts’ 

ending stocks forecasts for three major agricultural commodities: corn, soybeans and wheat. 

Private analysts’ forecast data for marketing years 2004/05 – 2013/14 are analyzed and the 

USDA forecasts of the same period are included for comparisons. The model incorporates the 

most recent revisions as explanatory variables. Besides, it builds an error covariance matrix to 

distinguish unforecastable outside shocks and the forecaster’s own idiosyncratic errors. The 

assumption on the monthly shocks is in line with the fact that forecast errors decrease as forecast 

horizons shorten. The introduction of forecasters’ corrections of their own errors serves as the 

link between forecasts and the forecast targets – the ending stocks. 

Private analysts’ forecast data are grouped into four representatives: the average of 

analysts’ forecasts, the median of analysts’ forecasts, the average of selected frequent analysts’ 

forecasts, and the median of selected frequent analysts’ forecasts. Estimation results show that 

private analysts’ forecasts, as a group, are inefficient for all three commodities. In particular, 

there is strong evidence that they are conservative in forecasting. The same results also apply to 

the selected frequent analysts’ forecasts for corn and soybeans. However, results are different for 

wheat as the estimated slopes are not significantly different from zero. Besides, results indicate 

that there are differences in the magnitudes of unforecastable shocks. The idiosyncratic errors of 
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private analysts’ forecasts are not negligible because the estimated standard deviations are 

significantly greater than zero, and larger than some of the outside shocks. 

Estimations of the USDA forecasts show that the USDA is conservative in making 

ending stocks forecasts for corn and soybeans, indicating inefficiency in its forecasts. The 

estimated intercepts and slopes are similar to those of the private analysts for these two 

commodities. However, we cannot find enough evidence that USDA wheat forecasts are 

inefficient. 

We also apply our model to the individual analysts’ forecasts. We use a multiple 

imputation method to fill the missing data points in the selected frequent analysts’ forecasts. 

Then we develop a method to use the imputed data for the MCMC estimations. Results show that 

there exists diversity across individual analysts’ forecasts. The analysts can be basically 

categorized into two groups, with one group exhibiting forecasting behavior similar to the 

USDA. 

An interesting finding in the present study is the similarity of the forecasting behaviors of 

the representative analysts and the USDA for corn and soybeans. A natural question to ask is: 

why are their forecasts so close to each other? We cannot deny that the private analysts and the 

USDA may share a substantial amount of information. Remember that, as discussed at the 

beginning, private analysts are market participants whose objective in the market might be 

different from the USDA. Thus, given that analysts release their forecasts first, it is possible that 

they try to make forecasts as close as possible to the USDA forecasts. This guess, however, is 

currently unexplored for private analysts’ forecasts, and is to be further investigated in future 

research. 
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3.9 Appendix 

Conditional Posterior Distributions for Model Parameters in the Gibbs Sampler 

The proposed model consists of regression (3.4) and priors (3.14): 

 𝒀𝒀 = 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 + 𝑷𝑷𝚺𝚺  

 𝜷𝜷~𝑁𝑁(𝑴𝑴,𝑽𝑽)  

 𝜀𝜀𝑡𝑡,𝑡𝑡~𝑁𝑁(0,𝜎𝜎2) (3.A.1) 

 𝑘𝑘𝑡𝑡,𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝑡𝑡2)  

 𝜎𝜎,𝜎𝜎𝑡𝑡~𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (0,∞)  

for 𝑛𝑛 = 1, … ,𝑁𝑁, 𝑡𝑡 = 1, … ,𝑇𝑇. Let 𝛀𝛀 ≡ 𝑷𝑷′𝑷𝑷. Given {𝜷𝜷,𝑾𝑾,𝜎𝜎2,𝛀𝛀}, the dependent variable 𝑦𝑦𝑡𝑡,𝑡𝑡 

follows a multivariate normal distribution: 

 𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀~𝑁𝑁(𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾,𝜎𝜎2𝛀𝛀) (3.A.2) 

and the likelihood is Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀). The posterior density of the set of model parameters is 

given by 

 (Λ) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀)�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗| 𝜎𝜎𝑗𝑗2)
𝑗𝑗𝑡𝑡

∗ 𝑝𝑝(𝜷𝜷)𝑝𝑝(𝜎𝜎2)�𝑝𝑝(𝜎𝜎𝑗𝑗2)
𝑁𝑁−1

𝑗𝑗=1

 (3.A.3) 

The conditional posterior density for 𝜷𝜷 is 
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 𝑝𝑝(𝜷𝜷|Λ\𝜷𝜷) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) ∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽) (3.A.4) 

Hence: 

 
𝜷𝜷|Λ\𝜷𝜷~𝑵𝑵((𝑿𝑿′𝛀𝛀−𝟏𝟏𝑿𝑿 𝜎𝜎2⁄ + 𝑽𝑽−1)−1(𝑿𝑿′𝛀𝛀−𝟏𝟏(𝒀𝒀 −𝑾𝑾𝑾𝑾) 𝜎𝜎2⁄

+ 𝑽𝑽−1𝑴𝑴), (𝑿𝑿′𝛀𝛀−𝟏𝟏𝑿𝑿 𝜎𝜎2⁄ + 𝑽𝑽−1)−1) 
(3.A.5) 

The conditional posterior density of 𝑘𝑘𝑡𝑡,𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑛𝑛 = 1, … ,𝑁𝑁 is 

 𝑝𝑝�𝑘𝑘𝑡𝑡,𝑡𝑡�Λ\𝑘𝑘𝑡𝑡,𝑡𝑡� = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) ∗ Φ(𝑘𝑘𝑡𝑡,𝑡𝑡| 𝜎𝜎𝑡𝑡2) (3.A.6) 

Therefore, 

 

𝑘𝑘𝑡𝑡,𝑡𝑡|Λ

\𝑘𝑘𝑡𝑡,𝑡𝑡~𝑁𝑁(
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛

′ 𝛀𝛀−𝟏𝟏�𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛� 𝜎𝜎2⁄

𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛
′ 𝛀𝛀−𝟏𝟏𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛

𝜎𝜎2⁄ + 1 𝜎𝜎𝑡𝑡2⁄
,

1
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛

′ 𝛀𝛀−𝟏𝟏𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛
𝜎𝜎2⁄ + 1 𝜎𝜎𝑡𝑡2⁄

) 
(3.A.7) 

where 𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛 is the column of 𝑾𝑾 which indicates the monthly shock 𝑘𝑘𝑡𝑡,𝑡𝑡, and 𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛 , 𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛 are 

matrices with the column indicating 𝑘𝑘𝑡𝑡,𝑡𝑡 deleted from 𝑾𝑾,𝑾𝑾, respectively. 

The conditional posterior density of 𝜎𝜎𝑡𝑡2, 𝑛𝑛 = 1, … ,𝑁𝑁 is 

 𝑝𝑝(𝜎𝜎𝑡𝑡2|Λ\𝜎𝜎𝑡𝑡2) = �Φ(𝑘𝑘𝑡𝑡,𝑡𝑡| 𝜎𝜎𝑡𝑡2)
𝑁𝑁

𝑗𝑗=1

∗ 𝑝𝑝(𝜎𝜎𝑡𝑡2) (3.A.8) 

Thus 

 𝜎𝜎𝑡𝑡2|Λ\𝜎𝜎𝑡𝑡2~𝐼𝐼𝐼𝐼((𝑇𝑇 − 1) 2⁄ ,�𝑘𝑘𝑡𝑡,𝑡𝑡
2

𝑇𝑇

𝑡𝑡=1

2� ) (3.A.9) 

Finally, the conditional posterior of 𝜎𝜎2 is 

 𝑝𝑝(𝜎𝜎2|Λ\𝜎𝜎2) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝜎𝜎2𝛀𝛀) ∗ 𝑝𝑝(𝜎𝜎2) (3.A.10) 

so that 

 𝜎𝜎2|Λ\𝜎𝜎2~𝐼𝐼𝐼𝐼((𝑇𝑇𝑁𝑁 − 1) 2⁄ , (𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾𝑾𝑾)′𝛀𝛀−𝟏𝟏(𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾𝑾𝑾) 2⁄ ) (3.A.11) 
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Figure 3.1. Monthly standard deviations of forecast revisions for corn 

 

 

 

Figure 3.2. Monthly standard deviations of forecast revisions for soybeans 
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Figure 3.3. Monthly standard deviations of forecast revisions for wheat 
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Figure 3.4. The integrated procedure of multiple imputations and MCMC estimations 
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Figure 3.5. Estimated coefficients for individual analysts’ forecasts for corn ending stocks 
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Figure 3.6. Estimated coefficients for individual analysts’ forecasts for soybeans ending stocks 
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Figure 3.7. Estimated coefficients for individual analysts’ forecasts for wheat ending stocks 
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Figure 3.8. Forecast timing for corn/soybean ending stocks 

 

 

 

 

 

Figure 3.9. Forecast timing for wheat ending stocks 
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Table 3.1. List of the selected frequent analysts 

Analyst by Name Corn  Soybeans Wheat 
# of obs. % of obs. # of obs. % of obs. # of obs. % of obs. 

Alaron / PFG Best 126 74.12% 126 74.12% 107 76.43% 
Allendale 161 94.71% 161 94.71% 134 95.71% 
Citigroup 163 95.88% 164 96.47% 133 95.00% 

Farm Futures 115 67.65% 115 67.65% 91 65.00% 
Fimat / New Edge 167 98.24% 167 98.24% 137 97.86% 

Fortis / ABN Amro - - - - 86 64.13% 
Kropf & Love 130 76.47% 132 77.65% 110 78.57% 

North American Risk Management 128 75.29% 128 75.29% 106 75.71% 
Prudential / Jefferies Bache 168 98.82% 161 94.71% 136 97.14% 

Risk Management Commodities 119 70.00% 118 69.41% - - 
US Commodities 150 88.24% 149 87.65% - - 

 
Note: The total number of observations for corn and soybeans is 170. The total number of observations for wheat is 140. The 

frequent analysts are defined as those who have more than 60% of observations. 
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Table 3.2. Descriptive statistics for USDA and analysts’ forecast revisions for corn, soybeans and wheat 

Commodity Datasets Mean Median St. Dev. Min Max 
       
 Analysts Avg. 0.0080 0.0034 0.1271 -0.6372 0.3805 
 Analysts Med. 0.0080 0.0066 0.1294 -0.5967 0.4260 

Corn Selected Freq. Ana. Avg. 0.0083 0.0148 0.1281 -0.6706 0.3783 
 Selected Freq. Ana. Med. 0.0087 0.0079 0.1293 -0.6190 0.4191 
 USDA 0.0097 0.0000 0.1249 -0.5988 0.4098 
       
       
 Analysts Avg. -0.0132 -0.0123 0.1388 -0.4953 0.5821 
 Analysts Med. -0.0117 -0.0082 0.1405 -0.4533 0.6747 

Soybeans Selected Freq. Ana. Avg. -0.0128 -0.0206 0.1407 -0.6024 0.5308 
 Selected Freq. Ana. Med. -0.0118 -0.0151 0.1445 -0.6133 0.5457 
 USDA -0.0132 0.0000 0.1387 -0.3830 0.7569 
       
       
 Analysts Avg. 0.0021 -0.0007 0.0564 -0.2140 0.2409 
 Analysts Med. 0.0015 0.0000 0.0571 -0.1989 0.2471 

Wheat Selected Freq. Ana. Avg. 0.0019 -0.0013 0.0592 -0.2392 0.2429 
 Selected Freq. Ana. Med. 0.0019 0.0000 0.0590 -0.2189 0.2471 
 USDA 0.0023 0.0000 0.0590 -0.1648 0.1863 
       

Note: summary statistics are displayed in logarithmic values. 
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Table 3.3. Parameter estimates for the ending stocks forecasts for corn, 2004/05 – 2013/14 

Parameter USDA Analysts Avg. Analysts Med. Selected Ana. Avg. Selected Ana. Med. 
 Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) 
           
Coefficient           
𝑛𝑛 (intercept) 0.0041 (0.0051) 0.0073 (0.0052) 0.0075  (0.0048) 0.0088 (0.0056) 0.0096 (0.0055)* 
𝛽𝛽 (slope) 0.1675 (0.0549)** 0.1646 (0.0640)** 0.1601  (0.0672)** 0.1521 (0.0684)** 0.2029 (0.0760)** 

           
Idiosyncratic Err.           

𝜎𝜎 0.0206 (0.0043) 0.0257 (0.0058) 0.0267  (0.0055) 0.0246 (0.0057) 0.0319 (0.0068) 
           

Shock           
𝜎𝜎1 0.1637 (0.0494) 0.1169 (0.0356) 0.1163 (0.0354) 0.1163 (0.0356) 0.1193 (0.0367) 
𝜎𝜎2 0.0559 (0.0194) 0.0173 (0.0127) 0.0189 (0.0137) 0.0133 (0.0109) 0.0219 (0.0157) 
𝜎𝜎3 0.0464 (0.0188) 0.0438 (0.0205) 0.0426 (0.0204) 0.0358 (0.0195) 0.0354 (0.0212) 
𝜎𝜎4 0.1146 (0.0330) 0.1188 (0.0352) 0.1189 (0.0351) 0.1099 (0.0327) 0.1039 (0.0333) 
𝜎𝜎5 0.0213 (0.0139) 0.0752 (0.0265) 0.0750 (0.0265) 0.0833 (0.0277) 0.0826 (0.0302) 
𝜎𝜎6 0.0843 (0.0254) 0.0703 (0.0258) 0.0880 (0.0296) 0.0684 (0.0249) 0.0735 (0.0297) 
𝜎𝜎7 0.1052 (0.0303) 0.1134 (0.0342) 0.1380 (0.0405) 0.1038 (0.0317) 0.1036 (0.0344) 
𝜎𝜎8 0.0135 (0.0104) 0.0437 (0.0216) 0.0442 (0.0218) 0.0579 (0.0231) 0.0536 (0.0264) 
𝜎𝜎9 0.0509 (0.0195) 0.1302 (0.0386) 0.1312 (0.0394) 0.1392 (0.0406) 0.1364 (0.0415) 
𝜎𝜎10 0.1396 (0.0399) 0.0893 (0.0282) 0.1028 (0.0314) 0.0865 (0.0276) 0.0909 (0.0307) 
𝜎𝜎11 0.1003 (0.0294) 0.0413 (0.0207) 0.0343 (0.0201) 0.0572 (0.0229) 0.0511 (0.0258) 
𝜎𝜎12 0.0496 (0.0194) 0.1617 (0.0459) 0.1513 (0.0435) 0.1805 (0.0509) 0.1560 (0.0459) 
𝜎𝜎13 0.2163 (0.0597) 0.1430 (0.0417) 0.1360 (0.0401) 0.1407 (0.0408) 0.1440 (0.0436) 
𝜎𝜎14 0.0984 (0.0328) 0.1044 (0.0329) 0.1092 (0.0341) 0.1173 (0.0352) 0.1182 (0.0378) 
𝜎𝜎15 0.2724 (0.0770) 0.2965 (0.0836) 0.2776 (0.0784) 0.3074 (0.0855) 0.2909 (0.0822) 
𝜎𝜎16 0.2713 (0.0756) 0.2529 (0.0709) 0.2835 (0.0801) 0.2327 (0.0653) 0.2641 (0.0755) 

           
 
Note: (*) and (**) denote parameter estimates significant at 10% and 5%, respectively. The standard errors for the idiosyncratic error 
and shocks are all significant at 5% level, and hence the indicators are omitted. 
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Table 3.4. Parameter estimates for the ending stocks forecasts for soybeans, 2004/05 – 2013/14 

Parameter USDA Analysts Avg. Analysts Med. Selected Ana. Avg. Selected Ana. Med. 
 Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) 
           
Coefficient           
𝑛𝑛 (intercept) -0.0176 (0.0060)** -0.0156 (0.0067)** -0.0155 (0.0068)** -0.0155 (0.0064)** -0.0157 (0.0067)** 
𝛽𝛽 (slope) 0.5632 (0.0675)** 0.5125 (0.0747)** 0.5011 (0.0792)** 0.5014 (0.0746)** 0.5231 (0.0782)** 

           
Idiosyncratic Err.           

𝜎𝜎 0.0636 (0.0065) 0.0735 (0.0069) 0.0773 (0.0073) 0.0713 (0.0068) 0.0760 (0.0072) 
           

Shock           
𝜎𝜎1 0.2383 (0.0740) 0.2372 (0.0744) 0.2290 (0.0727) 0.2255 (0.0717) 0.2345 (0.0742) 
𝜎𝜎2 0.1331 (0.0415) 0.1451 (0.0458) 0.1511 (0.0481) 0.1371 (0.0441) 0.1467 (0.0473) 
𝜎𝜎3 0.0401 (0.0289) 0.0413 (0.0303) 0.0473 (0.0329) 0.0481 (0.0324) 0.0612 (0.0392) 
𝜎𝜎4 0.0429 (0.0291) 0.0451 (0.0312) 0.0514 (0.0335) 0.0405 (0.0296) 0.0414 (0.0309) 
𝜎𝜎5 0.0298 (0.0246) 0.0535 (0.0381) 0.0543 (0.0396) 0.0447 (0.0344) 0.0503 (0.0379) 
𝜎𝜎6 0.1139 (0.0451) 0.0956 (0.0484) 0.0883 (0.0487) 0.1058 (0.0467) 0.0822 (0.0473) 
𝜎𝜎7 0.0578 (0.0366) 0.0627 (0.0400) 0.0635 (0.0412) 0.0540 (0.0377) 0.0629 (0.0405) 
𝜎𝜎8 0.0341 (0.0268) 0.0367 (0.0289) 0.0354 (0.0278) 0.0432 (0.0319) 0.0412 (0.0314) 
𝜎𝜎9 0.0435 (0.0302) 0.0401 (0.0310) 0.0403 (0.0315) 0.0403 (0.0308) 0.0413 (0.0318) 
𝜎𝜎10 0.0471 (0.0342) 0.0450 (0.0343) 0.0526 (0.0374) 0.0438 (0.0339) 0.0518 (0.0370) 
𝜎𝜎11 0.0662 (0.0399) 0.1117 (0.0523) 0.1068 (0.0557) 0.1142 (0.0524) 0.0980 (0.0529) 
𝜎𝜎12 0.1756 (0.0586) 0.1330 (0.0602) 0.1275 (0.0623) 0.1635 (0.0599) 0.1600 (0.0626) 
𝜎𝜎13 0.3215 (0.0937) 0.3260 (0.0965) 0.3450 (0.1026) 0.3092 (0.0924) 0.3051 (0.0935) 
𝜎𝜎14 0.1273 (0.0609) 0.1641 (0.0679) 0.1583 (0.0700) 0.1949 (0.0708) 0.1937 (0.0747) 
𝜎𝜎15 0.1256 (0.0531) 0.0664 (0.0454) 0.0850 (0.0549) 0.0732 (0.0501) 0.1040 (0.0601) 
𝜎𝜎16 0.1316 (0.0563) 0.0839 (0.0521) 0.0665 (0.0482) 0.0736 (0.0487) 0.0678 (0.0488) 

           
 
Note: (*) and (**) denote parameter estimates significant at 10% and 5%, respectively. The standard errors for the idiosyncratic error 
and shocks are all significant at 5% level, and hence the indicators are omitted. 
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Table 3.5. Parameter estimates for the ending stocks forecasts for wheat, 2004/05 – 2013/14 

Parameter USDA Analysts Avg. Analysts Med. Selected Ana. Avg. Selected Ana. Med. 
 Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) 
           
Coefficient           
𝑛𝑛 (intercept) -0.0025  (0.0039) -0.0007 (0.0033) 0.0014 (0.0043) -0.0094 (0.0036)** -0.0034 (0.0050) 
𝛽𝛽 (slope) 0.0913  (0.0861) 0.2116 (0.0915)** 0.2463 (0.1049)** 0.1092 (0.0981) 0.1948 (0.1312) 

           
Idiosyncratic Err.           

𝜎𝜎 0.0103  (0.0060) 0.0089 (0.0052) 0.0137 (0.0075) 0.0134 (0.0044) 0.0200 (0.0063) 
           

Shock           
𝜎𝜎1 0.0916 (0.0275) 0.1066 (0.0318) 0.1064 (0.0319) 0.1102 (0.0330) 0.1055 (0.0321) 
𝜎𝜎2 0.0335 (0.0116) 0.0114 (0.0068) 0.0140 (0.0091) 0.0099 (0.0071) 0.0125 (0.0097) 
𝜎𝜎3 0.0165 (0.0089) 0.0381 (0.0130) 0.0424 (0.0174) 0.0229 (0.0114) 0.0345 (0.0173) 
𝜎𝜎4 0.0505 (0.0153) 0.0421 (0.0132) 0.0375 (0.0141) 0.0453 (0.0148) 0.0360 (0.0165) 
𝜎𝜎5 0.0531 (0.0163) 0.0394 (0.0141) 0.0339 (0.0159) 0.0263 (0.0123) 0.0296 (0.0160) 
𝜎𝜎6 0.0437 (0.0142) 0.0564 (0.0170) 0.0475 (0.0176) 0.0731 (0.0220) 0.0549 (0.0220) 
𝜎𝜎7 0.0586 (0.0184) 0.0333 (0.0113) 0.0346 (0.0142) 0.0393 (0.0144) 0.0312 (0.0168) 
𝜎𝜎8 0.0548 (0.0168) 0.0303 (0.0109) 0.0363 (0.0142) 0.0583 (0.0182) 0.0387 (0.0175) 
𝜎𝜎9 0.0292 (0.0126) 0.0679 (0.0193) 0.0595 (0.0186) 0.0695 (0.0210) 0.0610 (0.0220) 
𝜎𝜎10 0.1069 (0.0304) 0.1043 (0.0290) 0.1033 (0.0298) 0.1073 (0.0305) 0.1020 (0.0304) 
𝜎𝜎11 0.0618 (0.0182) 0.0586 (0.0172) 0.0534 (0.0179) 0.0755 (0.0219) 0.0697 (0.0232) 
𝜎𝜎12 0.0942 (0.0263) 0.0803 (0.0228) 0.0759 (0.0234) 0.0679 (0.0201) 0.0726 (0.0232) 
𝜎𝜎13 0.0954 (0.0273) 0.1115 (0.0314) 0.1273 (0.0361) 0.1130 (0.0327) 0.1203 (0.0355) 

           
 
Note: (*) and (**) denote parameter estimates significant at 10% and 5%, respectively. The standard errors for the idiosyncratic error 
and shocks are all significant at 5% level, and hence the indicators are omitted. 
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Table 3.6. Median and Credible Intervals of the estimated coefficients for ending stocks forecasts, 2004/05 – 2013/14 

Parameter 𝑛𝑛 𝛽𝛽 
2.5% 50% 97.5% 2.5% 50% 97.5% 

        
 AA -0.0033 0.0074 0.0173 0.0454 0.1624 0.2962 

 AM -0.0020 0.0076 0.0164 0.0338 0.1578 0.3040 
Corn FAA -0.0018 0.0086 0.0215 0.0203 0.1518 0.2867 

 FAM -0.0012 0.0097 0.0209 0.0571 0.2020 0.3601 
 USDA -0.0054 0.0036 0.0158 0.0640 0.1658 0.2776 
        
 AA -0.0293 -0.0155 -0.0028 0.3653 0.5135 0.6580 
 AM -0.0287 -0.0155 -0.0028 0.3418 0.5027 0.6532 

Soybeans FAA -0.0284 -0.0155 -0.0031 0.3608 0.5108 0.6530 
 FAM -0.0296 -0.0154 -0.0031 0.3622 0.5250 0.6724 

 USDA -0.0298 -0.0174 -0.0067 0.4285 0.5638 0.6963 
        
 AA -0.0072 -0.0007 0.0058 0.0357 0.2126 0.3848 
 AM -0.0069 0.0014 0.0086 0.0678 0.2408 0.4722 

Wheat FAA -0.0161 -0.0097 -0.0020 -0.0788 0.1086 0.3100 
 FAM -0.0155 -0.0033 0.0058 -0.0666 0.1954 0.4533 
 USDA -0.0097 -0.0028 0.0057 -0.0673 0.0855 0.2729 
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CHAPTER 4 

DO ANALYSTS FORECAST THE ENDING STOCKS OR THE USDA FORECASTS? 

 

4.1 Abstract 

Previous researchers typically analyze the USDA and private analysts’ ending stocks 

forecasts separately, ignoring the interactions between these two types of forecasters. The present 

study recognizes the alternating forecast structure and builds a model to integrate the forecasts 

from these two sources. The model assumes that the forecasts are made from a synthetic 

forecaster who is comprised of the USDA and private analysts. A system which focuses on 

forecast revisions is then proposed for analysis. Results show that for corn, the USDA and 

analysts are forecasting each other, but their forecasts are both inefficient. For soybeans, the 

USDA is targeting the ending stocks, and private analysts are efficiently forecasting the USDA 

forecasts. 

 

4.2 Introduction 

The ending stocks of an agricultural commodity are recognized as a major indicator of 

the relative balance of supply and demand of the commodity in the market. They play important 

roles not only in policy makers’ decision making, but also in market participants’ planning for 

the upcoming marketing year. Thus, it is critical to provide the public with timely and accurate 

forecasts of ending stocks, reducing the uncertainty faced by the decision makers, and hence 

reducing market volatility. 

The preparation of ending stocks forecasts requires sizable efforts and costs in data 

collection and analysis of both the supply and demand sides of the market. Thus historically, 
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ending stocks forecasts have been offered as a public service and provided by the U.S. 

Department of Agricultural (USDA), a federal executive department. The USDA has long been 

releasing crop ending stocks forecasts in its monthly World Agricultural Supply and Demand 

Estimates (WASDE) reports. The agency prepares these forecasts under the policy requirements 

and the goal of enhancing the overall functioning of the agricultural markets. The USDA 

forecasts are thus highly credited for its integrity, objectivity, and the incorporation of the most 

comprehensive information. Researchers have found that market participants place substantial 

value on the WASDE reports and adjust their market behavior accordingly (e.g,. Isengildina-

Massa et al. 2008a, 2008b, Adjemian 2012). 

Besides the USDA, the private sector has also issued its own ending stocks forecasts. The 

recent rise in the number of private forecasts can be attributed to the reduced difficulty and cost 

of acquiring related information, as well as advances in technologies and analytical methods. 

More and more private analysts have joined the group of ending stocks forecasters over the past 

decade. Their forecasts also contain important information and are closely followed by the 

public. However, the private forecasts may not have exactly the same characteristics as the 

USDA forecasts. Specifically, their sources of information need not overlap or be as 

comprehensive as the ones from the USDA. For example, for the factors from the supply side, 

surveys conducted by the private sector may have different samples from the ones conducted by 

the USDA. In addition, the use of the same pieces of information may be different as well. This 

is because the analysis is performed by different analysts who can make different interpretations 

and inferences using various analytical methods. Moreover, private forecasts are not regulated by 

the policies which the USDA must follow. Some private analysts themselves are actively 

involved in the market and pursue profits by directly trading the corresponding commodities. 
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Thus it would not be surprising if their forecasts were affected by their own trading objectives 

and strategies. 

Crop ending stocks forecasts are fixed-event forecasts because there exist multiple 

forecasts for a specific event – the ending stock of a marketing year. As the private forecasts are 

typically published several days ahead of the USDA forecasts, it cannot be ruled out that the 

USDA and private analysts affect each other in forecasting the stocks. Thus, under the existing 

framework, it is difficult to investigate the behavior of one forecaster given the existence of its 

competitor, because the competitor’s forecasts are not included in the analysis. 

In addition, given that analysts’ forecasts are published ahead of the USDA forecasts, one 

natural question arises: do analysts in fact forecast the ending stocks or the upcoming USDA 

forecasts? It is interesting to identify the true target of the analysts’ forecasts. On one side, 

analysts can choose the upcoming USDA forecasts as the short-term target, because successful 

forecasts allow market participants to gain an advantage, thus mitigating the risk and even 

obtaining immediate profits. On the other side, analysts can choose to forecast the ending stocks 

if their focus is on the long term. However, as researchers typically cannot obtain the specific 

models that analysts employed, inferences about analysts’ forecasting behavior can only be made 

from limited public information, or the historical forecasts that analysts have made. 

Similar arguments can be applied to the USDA forecasts. The USDA may take into 

account the analysts’ forecasts, as these forecasts reflect expectations of market participants. In 

other fixed-events, research has found that relatively large differences between the consensus 

analysts’ forecasts and the government forecasts often lead to market volatility (e.g., French et 

al. 1989). There is also a large number of studies addressing the announcement effect of the 

government forecasts in various areas (e.g., Adjemian 2012). This announcement effect 
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introduces more uncertainty along the path toward the revealing the forecasting target. Thus, it is 

possible that the USDA will incorporate it as a factor in generating its forecasts, and also 

consider the forecasts from the private sector. 

The above question is typically overlooked in studies for other fixed-event forecasts. The 

reason is that either the forecast horizons are short, or the number of forecasts in a forecasting 

cycle is small. If the forecast horizon is short, it is irrelevant to forecast the government forecasts 

or forecast the outcome, as the differences will be quite small. If the number of forecasts in a 

forecasting cycle is small, there is limited information to identify the true forecast target. For 

example, studies addressing Federal Reserve’s macroeconomic projections such as nominal / real 

GDP growth, inflation, or unemployment typically focus on 4 or 5 quarterly forecasts. In 

agricultural events, only 5 monthly forecasts are used in studies on corn and soybeans production 

forecasts. 

But the situation is different for crop ending stocks forecasts for corn and soybeans. Over 

the past three decades, the USDA has issued a total of 17 monthly forecasts for each marketing 

year’s ending stocks for these two commodities. The forecast cycle is long, covering from May 

to September of the following calendar year, and the number of forecasts within the forecasting 

cycle is much more than for other fixed-events. Thus, it is more likely that the two targets – the 

upcoming USDA forecasts and the final ending stocks – can differ from each other, making it 

more possible for us to separate and investigate the private analysts’ forecasting behavior. 

Chapter 3 finds that both the USDA and the consensus analysts’ forecasts are inefficient 

during marketing years 2004/05 – 2013/14. In particular, both the USDA and the consensus 

analysts are conservative in adjusting their forecasts, and the estimated parameters are quite 

similar. This finding of similar forecasting patterns shows that there is possibility that one 
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forecaster is forecasting the other. Thus, it is interesting to identify the true relationship between 

the USDA forecasts, the analysts’ counterpart, and the final ending stocks. 

To the best of our knowledge, this problem has seldom been addressed in the past 

literature in fixed-event forecasts, as most researchers analyze private forecasts and government 

forecasts separately. Take for example the agricultural price and production forecasts. Garcia et 

al. (1997) treated analysts’ forecasts as competing forecasts of the USDA forecasts, thus 

implicitly assuming that private analysts, similar to the USDA, are directly forecasting the target 

outcome (the production of the commodity). They find a decline in the informational value of 

USDA forecasts, which is consistent with the rise in the provision of private forecasts. Egelkraut 

et al. (2003) evaluate the accuracy of USDA and analysts’ forecasts based on the same implicit 

assumption. On the other hand, McKenzie (2008) conducts his research under the assumption 

that private forecasts are unbiased estimates of the government forecasts. As for the ending 

stocks forecasts, which very few researchers have been addressed, it is necessary to specify the 

forecasting behavior of the two groups of forecasters for future research. 

Chapter 2 introduces an estimation framework that combines the two main strands in 

fixed-event forecast studies. The first strand is introduced by Nordhaus (1987), which focuses on 

forecast revisions. The second strand is introduced by Davies and Lahiri (1995, 1999), which 

directly addresses forecast errors and suggests error decompositions. Clements et al. (2007) first 

suggest analyzing forecast revisions by differencing the forecast errors. Chapter 2 further extends 

the Clements model by investigating adjacent forecast revisions, while retaining the link between 

the forecasts and the forecast target. Chapter 2 introduces an error covariance matrix which takes 

into account both the heteroscedasticity of the shocks and the autocorrelations generated by 

forecaster’s corrections of their own errors. 
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Based on the model in Chapter 2, the present study proposes a framework to analyze the 

efficiency of USDA and analysts’ forecasts in a single system. The underlying assumption is that 

the USDA and private analysts’ forecasts affect each other along the path toward the revealing of 

the ending stocks. Specifically, we recognize the alternating forecast structure of ending stocks 

and further divide the time interval between own forecast revisions into two intervals with 

different meanings. This division of time intervals allows us to examine each forecaster in more 

detail, and analyze the role played by the competing forecaster. Besides, we can focus on 

utilizing the necessary and most updated information only. We examine whether one forecaster 

is forecasting the other and then determine the interactions between them. The method is applied 

to the ending stocks forecasts for corn and soybeans from marketing years 2004/05 to 2013/14. 

We develop a Bayesian Markov Chain Monte Carlo (MCMC) method to estimate the 

parameters in the system. In the MCMC method, all parameters are estimated in one iteration 

step. Conjugate priors are adopted for the estimation. The chosen priors are also uninformative, 

so that the data dominates the estimation processes. The method developed can also serve as a 

justification of the proposed modelling structure. 

The rest of this study is organized as follows: Section 4.3 first introduces the alternating 

forecast structure of USDA and analysts’ ending stocks forecasts. Then it advances the model in 

Chapter 2 to estimate the efficiency of forecasts from these two sources in a single system. 

Section 4.4 outlines the source and descriptive statistics of the data. Section 4.5 introduces the 

empirical methods employed in the estimation. In Section 4.6, we describe the estimation results 

and perform further analysis. The final section provides concluding remarks.  
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4.3 The Model 

4.3.1 The Structure of Forecasts 

The discussion in the introduction shows that the treatment of multiple forecasts as 

competitors may generate biased results by ignoring the information behind the true forecast 

structure. The present study, however, adds another dimension to the multiple forecasts analysis 

by considering their forecast timing. In this way, two forecasts in different forecasting series 

which are made “during the same month” are no longer treated as released at the same time. As a 

result, this originally overlooked information allows us to further investigate the relationship 

between these series of forecasts. 

This section specifies the structure of ending stocks forecasts for corn and soybeans. A 

typical marketing year for corn and soybeans begins on September 1st, and ends on August 31st 

of the next calendar year. The ending stock of the past marketing year is then released at the end 

of September. Within a forecasting cycle, both the USDA and the analysts provide 17 monthly 

forecasts of the ending stocks. The first forecast is published in May before the marketing year 

starts, whereas the last forecast is released in September after the marketing year ends and before 

the ending stock report is finalized. Thus there exist two forecasts for the ending stocks of 

different marketing years in the months from May through September. 

The USDA forecasts are released between the 9th and 12th day of each month. Instead, 

private analysts typically finish making their forecasts several days before the publishing of the 

USDA counterparts. The survey of private analysts’ forecasts are then collected and released to 

the public. The average time between the release of the survey and the USDA forecasts is five 

days. 
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Since private analysts’ forecasts are released several days ahead of the USDA forecasts, it 

is reasonable to assume that the information content in these two groups of forecasts is different. 

In fact, forecasters can only take advantage of the information which is available before they 

finalize their forecasts. As the USDA releases its forecasts several days later, it can include 

additional information which private analysts, who have already forecasted, cannot obtain or 

utilize until the following month’s forecasts. This specification of analysts’ and USDA forecast 

structure further divides the time intervals, as well as the information contents, into smaller 

partitions. Thus the information contents can be allocated to either analysts’ updates of most 

recent USDA forecasts or USDA updates of most recent analyst’s forecasts. As a result, we can 

investigate the relationship between these two group of forecasters based on the partitioned 

information. 

To illustrate the forecast structure more clearly, let 𝑆𝑆𝑡𝑡 be the ending stock of marketing 

year 𝑡𝑡 for either commodity, 𝑈𝑈𝑡𝑡,𝑛𝑛 be the USDA 𝑛𝑛-month-ahead forecast of 𝑆𝑆𝑡𝑡, and 𝑉𝑉𝑡𝑡,𝑛𝑛 be the 

representative analyst’s 𝑛𝑛-month-ahead forecast of 𝑆𝑆𝑡𝑡. Figure 4.1 depicts the timeline of the 

USDA and representative analyst’s forecasts. It can be seen that the time interval of a 

forecaster’s own revision (either 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1 or 𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛+1) are further divided as the 

combination of the following two segments: 

Type A: The time interval between the USDA forecast issued in the previous month and 

the analyst’s forecast issued in the current month (e.g., 𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1). 

Type B: The time interval between the analyst’s forecast and the subsequent USDA 

forecast issued in the same month (e.g., 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛). 

The Type A interval typically lasts slightly more than three weeks. It includes most of the 

period following the USDA forecasts for the previous month. It covers the main influx of new 
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information that is used to update the previous forecasts. On the other hand, the Type B interval 

only lasts for slightly less than a week. It refers to the time between two forecasts issued in the 

same month. Thus, the time interval of the USDA own forecast revision (𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1) can be 

viewed as covering a Type A segment, the analyst’s update of past month USDA forecast (𝑉𝑉𝑡𝑡,𝑛𝑛 −

𝑈𝑈𝑡𝑡,𝑛𝑛+1), and a Type B segment, the USDA update of the most recent analyst’s forecast (𝑈𝑈𝑡𝑡,𝑛𝑛 −

𝑉𝑉𝑡𝑡,𝑛𝑛). Similarly, the time interval of the analyst’s own forecast revision (𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛+1) can be 

decomposed into a Type B segment, the USDA update of the analyst’s forecast (𝑈𝑈𝑡𝑡,𝑛𝑛+1 − 𝑉𝑉𝑡𝑡,𝑛𝑛+1), 

followed by a Type A segment, the analyst’s update of the past month USDA forecast 𝑉𝑉𝑡𝑡,𝑛𝑛 −

𝑈𝑈𝑡𝑡,𝑛𝑛+1. This specification of alternating forecast structure adds another dimension to the 

forecasting data, enabling us to investigate the relationship between these two groups of 

forecasters. 

 

4.3.2 Proposed Model 

This section describes the model to test the efficiency of both USDA and private 

analysts’ forecasts in the context of alternating forecast structure. Previous research on fixed-

event forecasts typically treat government and private forecasts as competitors. Tests were 

performed separately for each group of forecasts with null hypotheses like the following: 

𝐻𝐻0: Government forecasts are unbiased and efficient forecasts of the fixed event. 

𝐻𝐻0: Private analyst’s forecasts are unbiased and efficient forecasts of the fixed event. 

Based on the alternating forecast structure of the ending stocks, we propose testing the following 

two hypotheses: 
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𝐻𝐻0: USDA forecasts are unbiased and efficient forecasts of ending stocks, given the 

analysts’ forecasts. 

𝐻𝐻0: Analysts’ forecasts are unbiased and efficient forecasts of ending stocksm given the 

USDA forecasts. 

In this way, the analysis on the forecasting behavior of one forecaster is no longer 

isolated, because the forecasts from the competitor play a role in the evaluations. As discussed in 

the previous section, the advantage of including forecasts from the competitor is that they 

contain most up-to-date information. Information within past own forecasts are thus no longer 

the newest after the inclusion of the most recent forecasts from the competitor. 

The bias and efficiency of the forecasts can be tested by means of transformations of the 

Mincer and Zarnowitz (1969) regression: 

 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑈𝑈 + 𝛽𝛽𝑈𝑈𝑋𝑋𝑈𝑈 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑈𝑈,𝑡𝑡,𝑛𝑛 (4.1) 

 𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑉𝑉 + 𝛽𝛽𝑉𝑉𝑋𝑋𝑉𝑉 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑉𝑉,𝑡𝑡,𝑛𝑛 (4.2) 

The null hypothesis 𝐻𝐻0:𝑎𝑎𝑈𝑈 = 𝛽𝛽𝑈𝑈 = 0 indicates that the USDA forecasts are unbiased and 

efficient. Similar results apply to the analysts’ forecasts. However, it may not be wise to directly 

consider forecast errors (𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛, 𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑛𝑛), as they are related to future forecasts, which are 

not directly affected by current information. A natural substitute for the target of the ending 

stocks (𝑆𝑆𝑡𝑡) is the next month own forecast, i.e., 𝑈𝑈𝑡𝑡,𝑛𝑛+1 for the USDA and 𝑉𝑉𝑡𝑡,𝑛𝑛+1 for the analysts. 

Chapter 2 introduced an efficiency test based on these alternative forecasting targets. The 

proposed efficiency test in Chapter 2 can be expressed as the following systems of equations: 

 𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑈𝑈 + 𝛽𝛽𝑈𝑈�𝑈𝑈𝑡𝑡𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1� + 𝑘𝑘𝑈𝑈,𝑡𝑡,𝑛𝑛−1 − 𝜀𝜀𝑈𝑈,𝑡𝑡,𝑛𝑛−1 + 𝜀𝜀𝑈𝑈,𝑡𝑡,𝑛𝑛 for USDA (4.3) 

 𝑉𝑉𝑡𝑡,𝑛𝑛−1 − 𝑉𝑉𝑡𝑡,𝑛𝑛 = 𝑎𝑎𝑉𝑉 + 𝛽𝛽𝑉𝑉�𝑉𝑉𝑡𝑡𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛+1� + 𝑘𝑘𝑉𝑉,𝑡𝑡,𝑛𝑛−1 − 𝜀𝜀𝑉𝑉,𝑡𝑡,𝑛𝑛−1 + 𝜀𝜀𝑉𝑉,𝑡𝑡,𝑛𝑛 for analysts (4.4) 
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where 𝑘𝑘 and 𝜀𝜀 are the Davies and Lahiri (1995, 1999) decompositions of the error term in 

regressions (4.1) and (4.2), representing unforecastable shocks and idiosyncratic errors, 

respectively. The most recent own forecast revisions are the most obvious candidates to include 

as past information, because the own forecast history is always available. The null hypothesis 

𝐻𝐻0: (𝛼𝛼,𝛽𝛽) = (0,0) implies that the forecasts are efficient. 

The incorporation of the competing forecasts and the recognition of the alternating 

forecast structure can be used to further decompose the information structure in Chapter 2. As 

discussed in the previous section, there exists an analyst’s forecast 𝑉𝑉𝑡𝑡,𝑛𝑛−1 between the two 

consecutive USDA forecasts 𝑈𝑈𝑡𝑡,𝑛𝑛 and 𝑈𝑈𝑡𝑡,𝑛𝑛−1. Thus the information in the period between 𝑈𝑈𝑡𝑡,𝑛𝑛 

and 𝑈𝑈𝑡𝑡,𝑛𝑛−1 can be further divided into two pieces: Type A information between 𝑈𝑈𝑡𝑡,𝑛𝑛 and 𝑉𝑉𝑡𝑡𝑛𝑛−1, 

and Type B information between 𝑉𝑉𝑡𝑡,𝑛𝑛−1 and 𝑈𝑈𝑡𝑡,𝑛𝑛−1. Similarly, the information between the 

analyst’s revisions 𝑉𝑉𝑡𝑡,𝑛𝑛 and 𝑉𝑉𝑡𝑡,𝑛𝑛−1 are the sum of Type A information between 𝑈𝑈𝑡𝑡,𝑛𝑛 and 𝑉𝑉𝑡𝑡,𝑛𝑛−1, 

and Type B information between 𝑉𝑉𝑡𝑡,𝑛𝑛 and 𝑈𝑈𝑡𝑡,𝑛𝑛. 

Given this fact, we can apply first differencing with the considerations of both groups of 

forecasters. For notational purposes, we can treat that the forecasts of 𝑉𝑉𝑡𝑡,𝑛𝑛 and 𝑈𝑈𝑡𝑡,𝑛𝑛’s are made 

from a synthetic forecaster 𝑊𝑊. Let 𝑊𝑊𝑡𝑡 = [𝑈𝑈𝑡𝑡,1,𝑉𝑉𝑡𝑡,1,𝑈𝑈𝑡𝑡,2,𝑉𝑉𝑡𝑡,2, … ,𝑈𝑈𝑡𝑡,𝑁𝑁 ,𝑉𝑉𝑡𝑡,𝑁𝑁]′, a vector of 𝑉𝑉𝑡𝑡,𝑛𝑛 and 

𝑈𝑈𝑡𝑡,𝑛𝑛’s. Let 𝑚𝑚 be the subscript of 𝑊𝑊𝑡𝑡, representing the 𝑚𝑚th element of 𝑊𝑊𝑡𝑡. We now follow the 

steps in Chapter 2 to develop the estimation framework.  

The bias test following Davies and Lahiri (1995, 1999) can be written as 

 𝑆𝑆𝑡𝑡 −𝑊𝑊𝑡𝑡,𝑚𝑚 = �𝛼𝛼𝑗𝑗

𝑚𝑚

𝑗𝑗=1

+ �𝑘𝑘𝑡𝑡,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

+ 𝜀𝜀𝑡𝑡,𝑚𝑚 (4.5) 
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where 𝛼𝛼𝑗𝑗 is the monthly bias coefficient, representing either 𝑎𝑎𝑈𝑈 or 𝑎𝑎𝑉𝑉. 𝑘𝑘𝑡𝑡,𝑗𝑗~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎𝑗𝑗2) is the 

monthly unforecastable shock, and 𝜀𝜀𝑡𝑡,𝑚𝑚~𝑖𝑖. 𝑖𝑖.𝑑𝑑.𝑁𝑁(0,𝜎𝜎2) is the forecaster’s idiosyncratic error. 

Denote 𝑀𝑀 as the maximum forecast horizon of the synthetic forecaster. The value of 𝑀𝑀 is then 

twice of the maximum forecast horizon of either the USDA or the analyst. First differencing 

(4.5) gives the following system of equations: 

 

⎩
⎨

⎧
𝑆𝑆𝑡𝑡 −𝑊𝑊𝑡𝑡,1 =           𝛼𝛼1 + 𝑘𝑘𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,1

𝑊𝑊𝑡𝑡,1 −𝑊𝑊𝑡𝑡,2 =   𝛼𝛼2 + 𝑘𝑘𝑡𝑡,2 − 𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2
⋮

𝑊𝑊𝑡𝑡,𝑀𝑀−1 −𝑊𝑊𝑡𝑡,𝑀𝑀 = 𝛼𝛼𝑀𝑀 + 𝑘𝑘𝑡𝑡,𝑀𝑀 − 𝜀𝜀𝑡𝑡,𝑀𝑀−1 + 𝜀𝜀𝑡𝑡,𝑀𝑀

 (4.6) 

The efficiency test based on (4.6) consists of fitting  

 

⎩
⎨

⎧
𝑆𝑆𝑡𝑡 −𝑊𝑊𝑡𝑡,1 =             𝛼𝛼1 + 𝛽𝛽1𝑋𝑋𝑡𝑡,1 + 𝑘𝑘𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,1

𝑊𝑊𝑡𝑡,1 −𝑊𝑊𝑡𝑡,2 =     𝛼𝛼2 + 𝛽𝛽2𝑋𝑋𝑡𝑡,2 + 𝑘𝑘𝑡𝑡,2 − 𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2
⋮

𝑊𝑊𝑡𝑡,𝑀𝑀−1 −𝑊𝑊𝑡𝑡,𝑀𝑀 = 𝛼𝛼𝑀𝑀 + 𝛽𝛽𝑀𝑀𝑋𝑋𝑡𝑡,𝑀𝑀 + 𝑘𝑘𝑡𝑡,𝑀𝑀 − 𝜀𝜀𝑡𝑡,𝑀𝑀−1 + 𝜀𝜀𝑡𝑡,𝑀𝑀

 (4.7) 

where 𝑋𝑋𝑡𝑡,𝑚𝑚 represents one or more explanatory variables known when the forecast 𝑊𝑊𝑡𝑡,𝑚𝑚 is made. 

The null hypothesis 𝐻𝐻0:𝛼𝛼𝑛𝑛 = 𝛽𝛽𝑛𝑛 = 0 for all 𝑛𝑛 indicates efficiency of the group of forecasts 𝑊𝑊. 

In order to estimate the specific parameters for the USDA and the representative analyst, 

the elements of 𝑊𝑊𝑡𝑡 need to be reverted back to the original forecasts. Thus system (4.7) becomes 

 

⎩
⎪
⎨

⎪
⎧

𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1 = 𝛼𝛼1 + 𝛽𝛽1𝑋𝑋𝑡𝑡,1 + 𝑘𝑘𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,1
𝑈𝑈𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,1 = 𝛼𝛼2 + 𝛽𝛽2𝑋𝑋𝑡𝑡,2 + 𝑘𝑘𝑡𝑡,2 − 𝜀𝜀𝑡𝑡,1 + 𝜀𝜀𝑡𝑡,2

⋮
𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁 = 𝛼𝛼𝑀𝑀−1 + 𝛽𝛽𝑀𝑀−1𝑋𝑋𝑡𝑡,𝑀𝑀−1 + 𝑘𝑘𝑡𝑡,𝑀𝑀−1 − 𝜀𝜀𝑡𝑡,𝑀𝑀−2 + 𝜀𝜀𝑡𝑡,𝑀𝑀−1

𝑈𝑈𝑡𝑡,𝑁𝑁 − 𝑉𝑉𝑡𝑡,𝑁𝑁 = 𝛼𝛼𝑀𝑀 + 𝛽𝛽𝑀𝑀𝑋𝑋𝑡𝑡,𝑀𝑀 + 𝑘𝑘𝑡𝑡,𝑀𝑀 − 𝜀𝜀𝑡𝑡,𝑀𝑀−1 + 𝜀𝜀𝑡𝑡,𝑀𝑀

 (4.8) 

Each equation in system (4.8) can be classified into one of the previously proposed two 

categories based on the dependent variables. That is, the revisions in the dependent variables are 

either Type A revisions 𝑉𝑉𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 or Type B revisions 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛. Additional restrictions are 

imposed on the parameters to reflect the characteristics of revisions by their types. Specifically, 
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we restrict 𝛼𝛼 and 𝛽𝛽’s to be the same for each category. Besides, the variances of the idiosyncratic 

errors can also be separated. In notations, the following restrictions are applied: 

 𝛼𝛼1 = 𝛼𝛼3 = ⋯ = 𝛼𝛼𝑀𝑀−1 = 𝛼𝛼𝐴𝐴,𝛼𝛼2 = 𝛼𝛼4 = ⋯ = 𝛼𝛼𝑀𝑀 = 𝛼𝛼𝐵𝐵  

 𝛽𝛽1 = 𝛽𝛽3 = ⋯ = 𝛽𝛽𝑀𝑀−1 = 𝛽𝛽𝐴𝐴,𝛽𝛽2 = 𝛽𝛽4 = ⋯ = 𝛽𝛽𝑀𝑀 = 𝛽𝛽𝐵𝐵 (4.9) 

 𝜀𝜀1, 𝜀𝜀3, … , 𝜀𝜀𝑀𝑀−1~𝑁𝑁(0,𝜎𝜎𝐴𝐴2), 𝜀𝜀2, 𝜀𝜀4, … , 𝜀𝜀𝑀𝑀~𝑁𝑁(0,𝜎𝜎𝐵𝐵2)  

Further changing the subscripts of 𝑋𝑋, 𝑘𝑘 and 𝜀𝜀’s for corresponding types of revisions in a similar 

way, we have 

 

⎩
⎪
⎨

⎪
⎧

𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1 =              𝛼𝛼𝐴𝐴 + 𝛽𝛽𝐴𝐴𝑋𝑋𝑡𝑡,1,𝐴𝐴 + 𝑘𝑘𝑡𝑡,1,𝐴𝐴 + 𝜀𝜀𝑡𝑡,1,𝐴𝐴
𝑈𝑈𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,1 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽𝐵𝐵𝑋𝑋𝑡𝑡,1,𝐵𝐵 + 𝑘𝑘𝑡𝑡,1,𝐵𝐵 − 𝜀𝜀𝑡𝑡,1,𝐴𝐴 + 𝜀𝜀𝑡𝑡,1,𝐵𝐵

⋮
𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁 = 𝛼𝛼𝐴𝐴 + 𝛽𝛽𝐴𝐴𝑋𝑋𝑡𝑡,𝑁𝑁,𝐴𝐴 + 𝑘𝑘𝑡𝑡,𝑁𝑁,𝐴𝐴 − 𝜀𝜀𝑡𝑡,𝑁𝑁−1,𝐵𝐵 + 𝜀𝜀𝑡𝑡,𝑁𝑁,𝐴𝐴
𝑈𝑈𝑡𝑡,𝑁𝑁 − 𝑉𝑉𝑡𝑡,𝑁𝑁 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽𝐵𝐵𝑋𝑋𝑡𝑡,𝑁𝑁,𝐵𝐵 + 𝑘𝑘𝑡𝑡,𝑁𝑁,𝐵𝐵 − 𝜀𝜀𝑡𝑡,𝑁𝑁,𝐴𝐴 + 𝜀𝜀𝑡𝑡,𝑁𝑁,𝐵𝐵

 (4.10) 

System (4.10) can be interpreted as a joint estimation of efficiency of USDA and the 

representative analyst’s forecasts. Type A equations represent the test of whether USDA 

forecasts are efficient given the analyst’s forecasts, whereas Type B equations test whether 

analyst’s forecasts are efficient given USDA forecasts. 

The explanatory variables 𝑋𝑋𝑡𝑡,𝑛𝑛,𝐴𝐴 and 𝑋𝑋𝑡𝑡,𝑛𝑛,𝐵𝐵 can be any variable which is exogenous or 

predetermined. One possible candidate is the lag of the dependent variable. Given the alternating 

forecast structure, the first two lags of the dependent variables can be included because they 

represent different types of information. The first lag represents the most recent forecast revision 

of the alternative type. Specifically, if 𝑉𝑉𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 is the dependent variable, 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛 is the 

first lag. If 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛 is the dependent variable, 𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1 entered as one of the explanatory 

variables. The second candidate for explanatory variable is the most recent own forecast 

revision. For example, if 𝑉𝑉𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 is the dependent variable, 𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1 is the most recent 



www.manaraa.com

98 
 

own forecast revision and is included as an explanatory variable. Similarly, 𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛+1 is 

included if 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛 is the dependent variable. The final two observations in (4.10) are dropped 

from the dependent variables because the corresponding past forecast revisions do not exist. 

Thus, system (4.10) becomes: 

 

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1 =              𝛼𝛼𝐴𝐴 + 𝛽𝛽1𝐴𝐴�𝑈𝑈𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,1� + 𝛽𝛽2𝐴𝐴�𝑉𝑉𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2� + 𝑘𝑘𝑡𝑡,1,𝐴𝐴 + 𝜀𝜀𝑡𝑡,1,𝐴𝐴

𝑈𝑈𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,1 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽1𝐵𝐵�𝑉𝑉𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2� + 𝛽𝛽2𝐵𝐵�𝑈𝑈𝑡𝑡,2 − 𝑉𝑉𝑡𝑡,2� + 𝑘𝑘𝑡𝑡,1,𝐵𝐵 − 𝜀𝜀𝑡𝑡,1,𝐴𝐴 + 𝜀𝜀𝑡𝑡,1,𝐵𝐵
⋮

𝑉𝑉𝑡𝑡,𝑁𝑁−2 − 𝑈𝑈𝑡𝑡,𝑁𝑁−1 = 𝛼𝛼𝐴𝐴 + 𝛽𝛽1𝐴𝐴�𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁−1� + 𝛽𝛽2𝐴𝐴�𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁−2� + 𝑘𝑘𝑡𝑡,𝑁𝑁−1,𝐴𝐴 − 𝜀𝜀𝑡𝑡,𝑁𝑁−2,𝐵𝐵 + 𝜀𝜀𝑡𝑡,𝑁𝑁−1,𝐴𝐴

𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁−1 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽1𝐵𝐵�𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁−2� + 𝛽𝛽2𝐵𝐵�𝑈𝑈𝑡𝑡,𝑁𝑁−2 − 𝑉𝑉𝑡𝑡,𝑁𝑁−2� + 𝑘𝑘𝑡𝑡,𝑁𝑁−1,𝐵𝐵 − 𝜀𝜀𝑡𝑡,𝑁𝑁−1,𝐴𝐴 + 𝜀𝜀𝑡𝑡,𝑁𝑁−1,𝐵𝐵

 (4.11) 

To interpret the structure and parameters, take for example the Type A equations: 

 𝑉𝑉𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝛼𝛼𝐴𝐴 + 𝛽𝛽1𝐴𝐴�𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛�+ 𝛽𝛽2𝐴𝐴�𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛−1� + 𝑘𝑘𝑡𝑡,𝑛𝑛,𝐴𝐴 − 𝜀𝜀𝑡𝑡,𝑛𝑛−1,𝐵𝐵 + 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐴𝐴 (4.12) 

The dependent variable can be viewed as the decomposed form of the forecast error of 𝑈𝑈𝑡𝑡,𝑛𝑛, i.e., 

𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛, with contents related to future information being discarded. 𝛽𝛽1𝐴𝐴 is the coefficient 

representing the impact of the most recent forecast revision of the alternative category. In 

addition, it is worthwhile to note that the explanatory variable 𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛 can be viewed as the 

difference between the forecast errors of 𝑉𝑉𝑡𝑡,𝑛𝑛 and 𝑈𝑈𝑡𝑡,𝑛𝑛, i.e. (𝑆𝑆𝑡𝑡 − 𝑉𝑉𝑡𝑡,𝑛𝑛) − (𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,𝑛𝑛). Thus, 𝛽𝛽1𝐴𝐴 

can be interpreted using arguments similar to the forecast encompassing test by Granger and 

Newbold (1973, 1986). In this way, 𝛽𝛽1𝐴𝐴 = 0 implies that 𝑈𝑈𝑡𝑡,𝑛𝑛 encompasses 𝑉𝑉𝑡𝑡,𝑛𝑛 in the sense that 

there is no statistically significant increase in expected squared error loss if 𝑉𝑉𝑡𝑡,𝑛𝑛 is excluded. In 

other words, 𝑈𝑈𝑡𝑡,𝑛𝑛carries all the information in 𝑉𝑉𝑡𝑡,𝑛𝑛 in predicting 𝑉𝑉𝑡𝑡,𝑛𝑛−1. Therefore, one can reach 

a conclusion that 𝑈𝑈𝑡𝑡,𝑛𝑛 is a forecast of 𝑉𝑉𝑡𝑡,𝑛𝑛−1 if the estimated 𝛽𝛽1𝐴𝐴 is not significantly different 

from zero. 𝛽𝛽2𝐴𝐴 is the coefficient indicating the impact of the most recent own forecast revision. It 

measures the behavior of the forecast revisions based on the forecaster’s own forecast history 
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given the competing forecasts. 𝛽𝛽2𝐴𝐴 = 0 implies that forecast revisions cannot be inferred from 

their own past revisions. Similar arguments can be made for Type B equations. 

The joint estimation also introduces an error covariance matrix which is typically ignored 

if the two types of regressions are performed separately. We impose limited restrictions on the 

error covariance, while retaining the link between forecasts and the ending stocks. Specifically, 

the error covariance matrix allows for both heteroskedasticity in the shocks and autocorrelations 

generated by the forecaster’s own errors. The variances of unforecastable shocks are assumed to 

be the same for each forecast horizon, but are different for each category, so that 

𝑘𝑘𝑡𝑡,𝑛𝑛,𝐴𝐴~𝑖𝑖. 𝑖𝑖. 𝑑𝑑.𝑁𝑁(0,𝜎𝜎𝑛𝑛,𝐴𝐴
2 ) and 𝑘𝑘𝑡𝑡,𝑛𝑛,𝐵𝐵~𝑖𝑖. 𝑖𝑖. 𝑑𝑑.𝑁𝑁(0,𝜎𝜎𝑛𝑛,𝐵𝐵

2 ). The variance of the forecaster’s 

idiosyncratic errors are also assumed to be the same within each category. Based on the rationale 

in Chapter 2, the covariance matrix for a typical marketing year is as follows:1 

 

𝐵𝐵�2(𝑁𝑁−1)×2(𝑁𝑁−1) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜎𝜎�𝑁𝑁−1,𝐵𝐵

2 + 2𝜎𝜎𝐵𝐵2 −𝜎𝜎𝐴𝐴2 0 … 𝜎𝜎4,𝐵𝐵
2 0 0 0

−𝜎𝜎𝐴𝐴2 𝜎𝜎�𝑁𝑁−1,𝐴𝐴
2 + 2𝜎𝜎𝐴𝐴2 −𝜎𝜎𝐵𝐵2 𝜎𝜎4,𝐴𝐴

2 0 0
0 −𝜎𝜎𝐵𝐵2 𝜎𝜎�𝑁𝑁−2,𝐵𝐵

2 + 2𝜎𝜎𝐵𝐵2 −𝜎𝜎𝐴𝐴2 𝜎𝜎1,𝐵𝐵
2 0

⋮ −𝜎𝜎𝐴𝐴2 𝜎𝜎�𝑁𝑁−2,𝐴𝐴
2 + 2𝜎𝜎𝐴𝐴2 𝜎𝜎1,𝐴𝐴

2

𝜎𝜎4,𝐵𝐵
2 ⋱ ⋮
0 𝜎𝜎4,𝐴𝐴

2 ⋱ −𝜎𝜎2 0
⋮ 0 𝜎𝜎1,𝐵𝐵

2 −𝜎𝜎2 𝜎𝜎1,𝐵𝐵
2 + 2𝜎𝜎𝐵𝐵2 −𝜎𝜎𝐴𝐴2

0 0 0 𝜎𝜎1,𝐴𝐴
2 … 0 −𝜎𝜎𝐴𝐴2 𝜎𝜎1,𝐴𝐴

2 + 𝜎𝜎𝐴𝐴2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(4.13) 

where 𝜎𝜎�𝑛𝑛2 = 𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑛𝑛−122  for 𝑛𝑛 > 12. The diagonal elements represent the variances of the 

residuals. They are decomposed into the sum of the variances of the monthly shocks and the 

idiosyncratic errors. The sub-diagonal elements of the matrix represent the covariance of errors 

of two adjacent equations, which is determined by the variance of the forecaster’s idiosyncratic 

errors. The interpretations for 𝜎𝜎�𝑛𝑛2 come from the assumption in Chapter 2: for 𝑛𝑛 > 12,  an 

                                                             
1 The data is sorted by forecast horizon 𝑛𝑛 = 𝑁𝑁, … ,1. 
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additional variance is included because the shocks which appear in these months can affect the 

two forecasts made in the same month but are for different marketing years. 

The structure of the data is characterized by two dimensions, namely, forecast horizon 𝑛𝑛 

and marketing year 𝑡𝑡. While the order of the equations does not affect the estimation, it is 

interesting to see the structure of the full covariance matrix. Without loss of generality we can 

sort the data first by marketing year and then by forecast horizon. Then the full covariance 

matrix Σ is block diagonal with (4.13) as the blocks: 

 Σ = �
𝐵𝐵� 0 … 0
0 𝐵𝐵� … 0
⋮ ⋮ ⋮
0 0 … 𝐵𝐵�

�

𝑇𝑇×𝑇𝑇

 (4.14) 

 

4.4 Data 

The data consist of U.S. ending stocks and their corresponding USDA and private 

analysts’ monthly forecasts, for two major agricultural commodities – corn and soybeans. The 

marketing years used for the analysis are from 2004/05 through 2013/14, a total of 10 marketing 

years. 

U.S. ending stocks are obtained from the Grain Stocks Reports released by the National 

Agricultural Statistical Services (NASS). The report is published quarterly. As the marketing 

year for corn and soybeans ends in August, the ending stocks data are retrieved from the 

September report. The USDA monthly forecasts are obtained from the WASDE reports. For the 

two commodities, there are 17 forecasts published by the USDA in a forecasting cycle, with the 

first forecast released in May before the marketing year begins and the last one issued in 

September after the marketing year ends. The private analysts’ forecasts data have the same 
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format as the USDA counterpart. The data are obtained from the monthly Surveys of U.S. Grain 

and Soybeans Carryout Forecasts, which are conducted by Dow Jones Commodities Services. 

Therefore, based on the alternating forecast structure proposed in the previous section, we have 

34 forecast revisions for each marketing year. Among these forecast revisions, half of them are 

Type A revisions (i.e., the USDA forecast revisions of analyst forecasts), whereas the other half 

are Type B revisions (i.e., the representative analyst’s forecast revisions of the past month’s 

USDA forecast). 

The present study uses the average and median of analysts’ forecasts as representatives of 

analysts’ forecasts. We include 54 analysts who have provided at least one forecast during the 

marketing years of 2004/05 through 2013/14. The main reason underlying this choice is that in 

Chapter 3 the forecasts of these two representative analysts, as well as the USDA forecasts, are 

all found inefficient. Thus, it is possible to separate the forecast targets: the upcoming competing 

forecasts or the final ending stocks. Another reason is that the public generally focuses more on 

the analysts as a group, instead of a single analyst. So we use the statistics with all analysts 

included, such as the most recognized average of forecasts. The median of analysts’ forecasts is 

included because the number of analysts who make forecasts varies for each month, and 

sometimes the median can be more credible as the analysts’ consensus forecasts. 

Descriptive statistics for each type of the USDA and representative analyst’s revisions, as 

well as own forecast revisions, are depicted in Table 4.1. For all datasets, the means and medians 

of both Type A and Type B revisions are close to zero. The standard deviations of Type A and 

Type B revisions are smaller than those of the two own forecast revisions. This is because they 

are subintervals of the later. Besides, the standard deviations of Type A revisions are found to be 

larger than those of Type B revisions, as the Type A intervals are larger than Type B intervals. 
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For the same reason, the range of Type A revisions are observed larger than that of Type B 

revisions. 

 

4.5 Estimation Methods 

The proposed system of equations is estimated using Bayesian Markov Chain Monte 

Carlo (MCMC) methods. Bayesian MCMC methods offer a convenient way to estimate a model 

with the advocated error covariance structure. Besides, the proposed MCMC methods allow the 

data to play an essential role in validating the proposed structure. For example, if the proposed 

autocorrelations in the error covariance matrix do not exist, the MCMC simulations would 

generate results with variances of idiosyncratic errors close to zero, and much smaller compared 

to the variances of shocks. 

To explain the estimation methods, we can write the system (4.11) as a collection of the 

Type A and Type B equations: 

 �
𝑉𝑉𝑡𝑡,𝑛𝑛−1 − 𝑈𝑈𝑡𝑡,𝑛𝑛 = 𝛼𝛼𝐴𝐴 + 𝛽𝛽1𝐴𝐴�𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛�+ 𝛽𝛽2𝐴𝐴�𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛−1� + 𝑘𝑘𝑡𝑡,𝑛𝑛,𝐴𝐴 − 𝜀𝜀𝑡𝑡,𝑛𝑛−1,𝐵𝐵 + 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐴𝐴

𝑈𝑈𝑡𝑡,𝑛𝑛 − 𝑉𝑉𝑡𝑡,𝑛𝑛 = 𝛼𝛼𝐵𝐵 + 𝛽𝛽1𝐵𝐵�𝑉𝑉𝑡𝑡,𝑛𝑛 − 𝑈𝑈𝑡𝑡,𝑛𝑛−1�+ 𝛽𝛽2𝐵𝐵�𝑈𝑈𝑡𝑡,𝑛𝑛−1 − 𝑉𝑉𝑡𝑡,𝑛𝑛−1�+ 𝑘𝑘𝑡𝑡,𝑛𝑛,𝐵𝐵 − 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐴𝐴 + 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐵𝐵
 (4.15) 

for 𝑛𝑛 = 1, … ,𝑁𝑁 − 1 and 𝑡𝑡 = 1, … ,𝑇𝑇. In matrix form, 

 𝒚𝒚𝒕𝒕 = 𝒙𝒙𝒕𝒕𝜷𝜷 + 𝒘𝒘𝒌𝒌𝒕𝒕 + 𝒑𝒑𝜺𝜺𝒕𝒕 (4.16) 

where 𝒚𝒚𝒕𝒕 =

⎣
⎢
⎢
⎢
⎡

𝑆𝑆𝑡𝑡 − 𝑈𝑈𝑡𝑡,1
𝑈𝑈𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,1

⋮
𝑉𝑉𝑡𝑡,𝑁𝑁−2 − 𝑈𝑈𝑡𝑡,𝑁𝑁−1
𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁−1⎦

⎥
⎥
⎥
⎤

, 𝒙𝒙𝒕𝒕 =

⎣
⎢
⎢
⎢
⎢
⎡

1 𝑈𝑈𝑡𝑡,1 − 𝑉𝑉𝑡𝑡,1 𝑉𝑉𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2 0 0 0
0 0 0 1 𝑉𝑉𝑡𝑡,1 − 𝑈𝑈𝑡𝑡,2 𝑈𝑈𝑡𝑡,2 − 𝑉𝑉𝑡𝑡,2

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑈𝑈𝑡𝑡,𝑁𝑁−1 − 𝑉𝑉𝑡𝑡,𝑁𝑁−1 𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁−2 0 0 0
0 0 0 1 𝑉𝑉𝑡𝑡,𝑁𝑁−1 − 𝑈𝑈𝑡𝑡,𝑁𝑁−2 𝑈𝑈𝑡𝑡,𝑁𝑁−2 − 𝑉𝑉𝑡𝑡,𝑁𝑁−2⎦

⎥
⎥
⎥
⎥
⎤

,  
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𝜷𝜷 =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼𝛼𝐴𝐴
𝛽𝛽1𝐴𝐴
𝛽𝛽2𝐴𝐴
𝛼𝛼𝐵𝐵
𝛽𝛽1𝐵𝐵
𝛽𝛽2𝐵𝐵⎦

⎥
⎥
⎥
⎥
⎤

, 𝒌𝒌𝒕𝒕 =

⎣
⎢
⎢
⎢
⎡
𝑘𝑘𝑡𝑡,1,𝐴𝐴
𝑘𝑘𝑡𝑡,1,𝐵𝐵
⋮

𝑘𝑘𝑡𝑡,𝑁𝑁−1,𝐴𝐴
𝑘𝑘𝑡𝑡,𝑁𝑁−1,𝐵𝐵⎦

⎥
⎥
⎥
⎤

, 𝜺𝜺𝒕𝒕 =

⎣
⎢
⎢
⎢
⎡
𝜀𝜀𝑡𝑡,1,𝐴𝐴
𝜀𝜀𝑡𝑡,1,𝐵𝐵
⋮

𝜀𝜀𝑡𝑡,𝑁𝑁−1,𝐴𝐴
𝜀𝜀𝑡𝑡,𝑁𝑁−1,𝐵𝐵⎦

⎥
⎥
⎥
⎤
. 𝒘𝒘 is a matrix indicating the existence of elements in 

𝒌𝒌𝒕𝒕 in each equation. 𝒑𝒑 is a matrix indicating the existence of elements in 𝜺𝜺𝒕𝒕 in each equation. 𝒘𝒘 

and 𝒑𝒑 do not vary with 𝑡𝑡. The full system can be further written as 

 𝒀𝒀 = 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 + 𝑷𝑷𝑷𝑷 (4.17) 

where each character represents the vector containing the same character with subscripts 𝑡𝑡 =

1, … ,𝑇𝑇. For identification purposes, we set 𝑘𝑘𝑇𝑇,1,𝐴𝐴 and 𝑘𝑘𝑇𝑇,1,𝐵𝐵 to be zero. 

Our estimation is performed by Gibbs Sampling. We use conditionally conjugate priors 

for each parameter and derive the corresponding posterior distributions. Let 𝚲𝚲 =

{𝜷𝜷, �𝜎𝜎𝑛𝑛,𝐴𝐴
2 �

𝑛𝑛=1
𝑁𝑁

, �𝜎𝜎𝑛𝑛,𝐵𝐵
2 �

𝑛𝑛=1
𝑁𝑁

,𝜎𝜎𝐴𝐴2,𝜎𝜎𝐵𝐵2}. 𝚲𝚲 is the set of the parameters to be estimated in the model. The 

joint posterior density of Λ is 

 

𝑝𝑝(𝚲𝚲)    =   Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀)�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗,𝐴𝐴| 𝜎𝜎𝑗𝑗,𝐴𝐴
2 )

𝑗𝑗𝑡𝑡

�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗,𝐵𝐵| 𝜎𝜎𝑗𝑗,𝐵𝐵
2 )

𝑗𝑗𝑡𝑡

∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽)𝑝𝑝(𝜎𝜎𝐴𝐴2)𝑝𝑝(𝜎𝜎𝐵𝐵2)�𝑝𝑝(𝜎𝜎𝑗𝑗,𝐴𝐴
2 )

𝑁𝑁

𝑗𝑗=1

�𝑝𝑝(𝜎𝜎𝑗𝑗,𝐵𝐵
2 )

𝑁𝑁

𝑗𝑗=1

 

(4.18) 

where Φ(𝒀𝒀|𝜷𝜷,𝑾𝑾,𝛀𝛀) is a multivariate normal distribution with mean 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 and variance 𝛀𝛀. 

The conditionally conjugate priors chosen for the parameters are: 

 

𝜷𝜷~𝑁𝑁(𝑴𝑴,𝑽𝑽) 

𝜀𝜀𝑡𝑡,𝑛𝑛,𝐴𝐴~𝑁𝑁(0,𝜎𝜎𝐴𝐴2), 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐵𝐵~𝑁𝑁(0,𝜎𝜎𝐵𝐵2) 

𝑘𝑘𝑡𝑡,𝑛𝑛,𝐴𝐴~𝑁𝑁�0,𝜎𝜎𝑛𝑛,𝐴𝐴
2 �,𝑘𝑘𝑡𝑡,𝑛𝑛,𝐵𝐵~𝑁𝑁�0,𝜎𝜎𝑛𝑛,𝐵𝐵

2 � 

𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵,𝜎𝜎𝑛𝑛,𝐴𝐴,𝜎𝜎𝑛𝑛,𝐵𝐵~𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑒𝑒𝑒𝑒𝑚𝑚 (0,∞) 

(4.19) 



www.manaraa.com

104 
 

for 𝑛𝑛 = 1, … ,𝑁𝑁, and 𝑡𝑡 = 1, … ,𝑇𝑇. The prior distribution for the coefficient vector 𝜷𝜷 is 

multivariate normal with mean 𝑴𝑴 = 𝟎𝟎6 and covariance matrix 𝑽𝑽 = 1000𝑰𝑰6×6, where 𝟎𝟎6 is a 

6×1 vector of zeros and 𝑰𝑰6×6 is a 6×6 identity matrix. The prior mean of 𝜷𝜷 is chosen to be zero 

so that we cannot reject the null hypothesis of efficiency in default. The scale of the variance is 

chosen to be large so that the priors are non-informative. The draws of 𝜷𝜷 will thus be diffused 

and widely spread around the mean zero. The improper uniform prior for the standard deviation 

parameters is chosen following Gelman (2006). This prior is non-informative and can be viewed 

as a limit of the half-𝑡𝑡 family distributions, which is conditionally conjugate to the extent of more 

general folded-noncentral-𝑡𝑡 distributions. The conditional posterior distribution for each 

parameter is outlined in the Appendix. 

The MCMC iteration steps for the proposed model are as follows: 

Step 1: For each chain, set up initial values for each parameter in the set 𝚲𝚲, as well as for 

𝑾𝑾(0) and 𝑷𝑷(0). 

Step 2: Given �𝑾𝑾(𝑖𝑖),𝜎𝜎𝐴𝐴
2(𝑖𝑖),𝜎𝜎𝐵𝐵

2(𝑖𝑖)�, draw 𝜷𝜷(𝑖𝑖) from its posterior, which is a multivariate 

normal distribution. 

Step 3: Given {𝜷𝜷(𝑖𝑖+1),𝜎𝜎𝐴𝐴
2(𝑖𝑖),𝜎𝜎𝐵𝐵

2(𝑖𝑖), �𝜎𝜎𝑛𝑛,𝐴𝐴
2 �

(𝑖𝑖)
, �𝜎𝜎𝑛𝑛,𝐵𝐵

2 �
(𝑖𝑖)

,𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚

(𝑖𝑖) }, sequentially draw 𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚
(𝑖𝑖+1) 

its posterior, which is a normal distribution, for each 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑛𝑛 = 1, … ,𝑁𝑁 − 1, and type 𝑚𝑚 =

𝐴𝐴,𝐵𝐵. 

Step 4: Given {𝜷𝜷(𝑖𝑖+1),𝑾𝑾(𝑖𝑖+1)}, update 𝑷𝑷(𝑖𝑖+1). Then draw 𝜎𝜎𝑚𝑚
2(𝑖𝑖+1) from its posterior, which 

is an inverse gamma distribution, for each type 𝑚𝑚 = 𝐴𝐴,𝐵𝐵. 

Step 5: Given 𝑾𝑾(𝑖𝑖+1), sequentially draw 𝜎𝜎𝑛𝑛,𝑚𝑚
2(𝑖𝑖+1) from its posterior, an inverse gamma 

distribution, for each 𝑛𝑛 = 1, … ,𝑁𝑁 − 1 and type 𝑚𝑚 = 𝐴𝐴,𝐵𝐵. 
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Step 6: Set 𝑖𝑖 = 𝑖𝑖 + 1. 

Step 7: Repeat Steps 2-6 until the maximum iteration is reached. 

For each dataset, we run three Markov Chains with different starting values. Each chain 

is proceeded for 200,000 iterations. The first 100,000 iterations of each chain are discarded as 

burn-in period. Gelman and Rubin (1992) tests are then applied to check the convergence of the 

remaining part of the chains. The test statistic compares the variances of both within the chains 

and between the chains. The convergence is indicated by the values of the statistic which are 

close to 1. 

 

4.6 Results and Discussion 

Estimation results are summarized in Tables 4.2 and 4.3. Table 4.2 reports the means and 

standard deviations for the estimated coefficients and idiosyncratic errors for each combination 

of USDA and the representative analyst’s forecasts, i.e., USDA vs. the average or median of the 

representative analyst’s forecasts, for corn and soybeans. The range of the standard errors of the 

unforecastable shocks is also reported. Table 4.3 reports the medians and 95% credible intervals 

for the intercepts and the slopes. Gelman and Rubin (1992) test statistics are below 1.1 for all 

parameters of all four datasets, suggesting convergence of the Markov Chains. 

 

4.6.1 Corn 

The point estimate of the intercept 𝛼𝛼𝐴𝐴 represents the bias of the USDA forecasts. The 

estimates are positive but insignificant for the two dataset, suggesting that we cannot rule out that 

USDA forecasts are unbiased. The point estimate of the intercept 𝛼𝛼𝐵𝐵 represents the bias of the 
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representative analyst’s forecasts. The estimates are also positive but insignificant, thus we 

cannot find evidence that the representative analyst’s forecasts are biased. 

The point estimate of the slope 𝛽𝛽1𝐴𝐴 measures the relationship between the USDA 

forecasts and their immediate preceding forecast revisions. The estimates are 3.6% with analysts’ 

average forecasts as the representative and 4.31% with analysts’ median forecasts as the 

representative. The estimates are positive but insignificant, suggesting that there is no significant 

impact from the immediate preceding forecast revisions. Similarly, the point estimate of the 

slope 𝛽𝛽1𝐵𝐵 measures the counterpart for the representative analyst’s forecasts. The estimates are 

negative, at -6.31% with analysts’ average forecasts as the representative and -8.42% with 

analysts’ median forecasts as the representative. However, the estimates are also insignificant.  

The point estimates of 𝛽𝛽2𝐴𝐴 and 𝛽𝛽2𝐵𝐵 measure the efficiency with respect to own past 

forecast revisions. The estimate of 𝛽𝛽2𝐴𝐴 is 19.24% with analysts’ average forecasts as the 

representative. The estimate is significant at 5% level. That is to say, if USDA adjusts its 

forecasts up by 1% in the past month, its forecasts will also be revised up by roughly 0.19% on 

average. The estimate of 𝛽𝛽2𝐴𝐴 is 14.49% with analysts’ median forecasts as the representative. 

The estimate is smaller, but also significant at 5% level. The estimates of 𝛽𝛽2𝐵𝐵 are 16.31% and 

15.01% for the two dataset respectively. Estimates are positive and also significant. 

For the dataset with analysts’ average forecasts as the representative, the estimates of the 

standard errors of Type A unforecastable shocks range from 0.73% to 26.29%. For Type B 

unforecastable shocks, the range is 1.82% - 13.06%. The upper limit of the Type A range is 

larger, which is consistent with the fact that Type A time intervals are larger than Type B time 

intervals. The estimates of the standard errors of idiosyncratic error are 1.64% and 0.56% on 
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average, due to the same argument. Similar results are found for the dataset with analysts’ 

median forecasts as the representative. 

 

4.6.2 Soybeans 

The estimates of parameters for soybeans exhibit different patterns. the point estimates of 

𝛼𝛼1𝐴𝐴, 𝛽𝛽1𝐴𝐴 and 𝛽𝛽2𝐴𝐴 are all significantly different from zero. Specifically, the estimates of 𝛼𝛼𝐴𝐴 are     

-2.41% and -2.39%, respectively, for the two dataset, indicating that USDA has a tendency to 

overestimate the ending stocks. The estimates of 𝛽𝛽1𝐴𝐴 are 63.59% and 66.39% respectively. The 

estimates of 𝛽𝛽2𝐴𝐴 are 41.65% and 37.46% respectively. The point estimates of 𝛼𝛼𝐵𝐵, 𝛽𝛽1𝐵𝐵 and 𝛽𝛽2𝐵𝐵, 

however, are different from the USDA counterpart. Although the estimates are all positive for 

both datasets, they are insignificantly different from zero. This finding shows that there is not 

enough evidence to reject the efficiency of the representative analyst’s forecasts. 

For the error covariance parameters, the estimated standard errors range from 1.61% to 

29.89% (1.6% - 31.14%) for Type A shocks and from 2.13% to 15.01% (1.54% - 14.96%) for 

Type B shocks. The estimated standard errors of the idiosyncratic errors are 5.75% (5.93%) for 

Type A and 0.94% for Type B. Similar to the case in corn, the upper limits for the Type A 

shocks are larger, and the size of the Type A idiosyncratic errors are larger. It is also interesting 

to find that all these error covariance parameters are larger than the respective ones for corn. The 

results thus indicates that the shocks in soybeans ending stocks are larger than those in corn 

ending stocks, and both USDA and analysts have lower precision in forecasting the soybeans 

ending stocks. 

 

 



www.manaraa.com

108 
 

4.6.3 Discussion: Forecasting Behaviors 

The forecasting behavior for both the USDA and the analysts can be inferred from the 

estimation results. For corn, because the estimate for 𝛽𝛽1𝐴𝐴 is not significantly different from zero, 

similar to the arguments in Granger and Newbold (1973, 1986) we can conclude that the USDA 

forecast 𝑈𝑈𝑡𝑡,𝑛𝑛 encompasses the analysts’ forecast 𝑉𝑉𝑡𝑡,𝑛𝑛 in forecasting 𝑉𝑉𝑡𝑡,𝑛𝑛−1. In other words, 𝑈𝑈𝑡𝑡,𝑛𝑛 

has all the information in 𝑉𝑉𝑡𝑡,𝑛𝑛 and can substitute the later in forecasting 𝑉𝑉𝑡𝑡,𝑛𝑛−1. Thus we can 

claim that the USDA is actually forecasting the upcoming analysts’ forecasts. Similar arguments 

can be applied to the representative analyst’s forecasts, as 𝛽𝛽1𝐵𝐵 is found to be insignificant. The 

forecasts made by the USDA and analysts, however, are still inefficient with respect to their own 

forecast revision history because of the significant positive estimates of 𝛽𝛽2𝐴𝐴 and 𝛽𝛽1𝐵𝐵. 

For soybeans, the forecast encompassing argument for the USDA is rejected due to the 

significantly positive estimate of 𝛽𝛽1𝐴𝐴. That is to say, the USDA forecast 𝑈𝑈𝑡𝑡,𝑛𝑛 does not contain all 

the information in 𝑉𝑉𝑡𝑡,𝑛𝑛, thus cannot be viewed as the forecast of 𝑉𝑉𝑡𝑡,𝑛𝑛−1. Hence it can be argue that 

the USDA is not forecasting the upcoming analyst’s forecasts. Besides, the USDA forecasts are 

inefficient because of the significant estimates of 𝛼𝛼1𝐴𝐴, 𝛽𝛽1𝐴𝐴 and 𝛽𝛽2𝐴𝐴. In contrast, for the 

representative analyst’s forecasts, the forecast encompassing argument cannot be rejected. Thus 

the representative analyst’s forecasts can be viewed as the forecasts of the upcoming USDA 

forecasts. Moreover, there is not enough evidence that the analyst’s forecasts are inefficient, 

because the estimated 𝛼𝛼𝐵𝐵, 𝛽𝛽1𝐵𝐵 and 𝛽𝛽2𝐵𝐵 are not significantly different from zero. 

It is interesting to find that, for both commodities, the analysts are actually forecasting the 

USDA forecasts. Thus, we can argue that the private analysts focus more on the short-term 

targets. As discussed in the introduction, this could be possibly because of the analysts’ role in 

the market. Successful forecasts of the upcoming USDA forecasts can help the analysts mitigate 
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the risk or even gain profit from trading. This is more attractive to the private sector as they are 

not required by policy to provide accurate and objective forecasts to the public. 

 

4.7 Conclusions 

We developed a model to jointly investigate the efficiency of the USDA and analysts’ 

ending stocks forecasts. The model recognizes the alternating forecast structure and performs the 

estimations of USDA and the representative analyst’s forecasts in a single system. In this way, 

we take into account the interaction of these two forecasters which have been overlooked in 

previous studies. The model is applied to USDA and analysts’ forecasts of ending stocks for corn 

and soybeans from marketing years 2004/05 to 2013/14. A Bayesian MCMC method is 

developed for estimations. Results show that for corn, the USDA and analysts are forecasting 

each other, but their forecasts are inefficient. For soybeans, the USDA is targeting the ending 

stocks, and private analysts are efficiently forecasting the USDA forecasts. Thus, it can be 

concluded that private analysts focus more on the short-term. Hence, future models can directly 

build on the assumption that the forecasting target of private analysts is the USDA forecasts 

instead of the ending stocks of corn and soybean. 
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4.9 Appendix 

Conditional Posterior Distributions for Model Parameters in the Gibbs Sampler 

The proposed model consists of system (4.15) and priors (4.19): 

 𝒀𝒀 = 𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾 + 𝑷𝑷𝚺𝚺  

 𝜷𝜷~𝑁𝑁(𝑴𝑴,𝑽𝑽)  

 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐴𝐴~𝑁𝑁(0,𝜎𝜎𝐴𝐴2), 𝜀𝜀𝑡𝑡,𝑛𝑛,𝐵𝐵~𝑁𝑁(0,𝜎𝜎𝐵𝐵2) (4.A.1) 

 𝑘𝑘𝑡𝑡,𝑛𝑛,𝐴𝐴~𝑁𝑁�0,𝜎𝜎𝑛𝑛,𝐴𝐴
2 �,𝑘𝑘𝑡𝑡,𝑛𝑛,𝐵𝐵~𝑁𝑁�0,𝜎𝜎𝑛𝑛,𝐵𝐵

2 �  

  𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵,𝜎𝜎𝑛𝑛,𝐴𝐴,𝜎𝜎𝑛𝑛,𝐵𝐵~𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑒𝑒𝑒𝑒𝑚𝑚 (0,∞)  

for 𝑛𝑛 = 1, … ,𝑁𝑁, 𝑡𝑡 = 1, … ,𝑇𝑇. Let the subscript 𝑚𝑚 be either 𝐴𝐴 or 𝐵𝐵. Let 𝛀𝛀 ≡ 𝑷𝑷𝚺𝚺(𝑷𝑷𝚺𝚺)′. Given 

{𝜷𝜷,𝑾𝑾,𝛀𝛀}, the dependent variable 𝒀𝒀 follows a multivariate normal distribution: 

 𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀~𝑁𝑁(𝑿𝑿𝜷𝜷 + 𝑾𝑾𝑾𝑾,𝛀𝛀) (4.A.2) 

and the likelihood is Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀). The posterior density of the set of model parameters is given 

by 

 

𝑝𝑝(Λ) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀)�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗,𝐴𝐴| 𝜎𝜎𝑗𝑗,𝐴𝐴
2 )

𝑗𝑗𝑡𝑡

�Φ(𝑘𝑘𝑡𝑡,𝑗𝑗,𝐵𝐵| 𝜎𝜎𝑗𝑗,𝐵𝐵
2 )

𝑗𝑗𝑡𝑡

∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽)𝑝𝑝(𝜎𝜎𝐴𝐴2)𝑝𝑝(𝜎𝜎𝐵𝐵2)�𝑝𝑝(𝜎𝜎𝑗𝑗,𝐴𝐴
2 )

𝑁𝑁

𝑗𝑗=1

�𝑝𝑝(𝜎𝜎𝑗𝑗,𝐵𝐵
2 )

𝑁𝑁

𝑗𝑗=1

 

(4.A.3) 

The conditional posterior density for 𝜷𝜷 is 

 𝑝𝑝(𝜷𝜷|Λ\𝜷𝜷) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀) ∗ Φ(𝜷𝜷| 𝑴𝑴,𝑽𝑽) (4.A.4) 

Hence: 

 
𝜷𝜷|Λ\𝜷𝜷~𝑵𝑵((𝑿𝑿′𝛀𝛀−𝟏𝟏𝑿𝑿+ 𝑽𝑽−1)−1(𝑿𝑿′𝛀𝛀−𝟏𝟏(𝒀𝒀 −𝑾𝑾𝑾𝑾)

+ 𝑽𝑽−1𝑴𝑴), (𝑿𝑿′𝛀𝛀−𝟏𝟏𝑿𝑿 + 𝑽𝑽−1)−1) 
(4.A.5) 
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The conditional posterior density of 𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚, 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑛𝑛 = 1, … ,𝑁𝑁,𝑚𝑚 = 𝐴𝐴,𝐵𝐵 is 

 𝑝𝑝�𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚�Λ\𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚� = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀) ∗ Φ(𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚| 𝜎𝜎𝑛𝑛,𝑚𝑚
2 ) (4.A.6) 

Therefore, 

 

𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚|Λ\𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚~  

𝑁𝑁(
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚

′ 𝛀𝛀−𝟏𝟏�𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚�
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚

′ 𝛀𝛀−𝟏𝟏𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚 + 1 𝜎𝜎𝑛𝑛,𝑚𝑚
2⁄ ,

1
𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚

′ 𝛀𝛀−𝟏𝟏𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚 + 1 𝜎𝜎𝑛𝑛,𝑚𝑚
2⁄ ) 

(4.A.7) 

where 𝑾𝑾𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚  is the column of 𝑾𝑾 which indicates the monthly shock 𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚, and 𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚 , 

𝑾𝑾−𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚  are matrices with the column indicating 𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚 deleted from 𝑾𝑾,𝑾𝑾, respectively. 

The conditional posterior density of 𝜎𝜎𝑛𝑛,𝑚𝑚
2 ,𝑛𝑛 = 1, … ,𝑁𝑁, 𝑚𝑚 = 𝐴𝐴,𝐵𝐵, is 

 𝑝𝑝�𝜎𝜎𝑛𝑛,𝑚𝑚
2 �Λ\𝜎𝜎𝑛𝑛,𝑚𝑚

2 � = �Φ(𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚| 𝜎𝜎𝑛𝑛,𝑚𝑚
2 )

𝑁𝑁

𝑗𝑗=1

∗ 𝑝𝑝(𝜎𝜎𝑛𝑛,𝑚𝑚
2 ) (4.A.8) 

Thus 

 𝜎𝜎𝑛𝑛,𝑚𝑚
2 |Λ\𝜎𝜎𝑛𝑛,𝑚𝑚

2 ~𝐼𝐼𝐼𝐼((𝑇𝑇 − 1) 2⁄ ,�𝑘𝑘𝑡𝑡,𝑛𝑛,𝑚𝑚
2

𝑇𝑇

𝑡𝑡=1

2� ) (4.A.9) 

Finally, the conditional posterior of 𝜎𝜎𝑚𝑚2 , 𝑚𝑚 = 𝐴𝐴,𝐵𝐵, is 

 𝑝𝑝(𝜎𝜎𝑚𝑚2 |Λ\𝜎𝜎𝑚𝑚2 ) = Φ(𝒀𝒀| 𝜷𝜷,𝑾𝑾,𝛀𝛀) ∗ 𝑝𝑝(𝜎𝜎𝑚𝑚2 ) (4.A.10) 

so that  

 𝜎𝜎2|Λ\𝜎𝜎2~𝐼𝐼𝐼𝐼((𝑇𝑇𝑁𝑁 − 1) 2⁄ , (𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾𝑾𝑾)′(𝑷𝑷𝑚𝑚𝑷𝑷𝑚𝑚′ )−1(𝒀𝒀 − 𝑿𝑿𝜷𝜷 −𝑾𝑾𝑾𝑾) 2⁄ ) (4.A.11) 

where 𝑷𝑷𝑚𝑚 = 𝑰𝑰𝑚𝑚𝑷𝑷. 𝑰𝑰𝑚𝑚 is an indicator vector which indicate the locations of Type 𝑚𝑚 idiosyncratic 

errors in 𝚺𝚺. In particular, 𝑰𝑰𝐴𝐴 = [1 0 1 0 …  1 0]′, 𝑰𝑰𝐵𝐵 = [0 1 0 1 … 0 1]′. 
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Figure 4.1. Timeline of USDA and analysts’ forecasts of ending stocks for corn and soybeans 
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Table 4.1. Descriptive statistics for USDA and analysts forecast revisions for corn and soybeans 

Data Mean Median St. Dev. Min Max 
      

Corn, Average      
Type A Revisions 0.0078 -0.0019 0.1111 -0.5966 0.3676 
Type B Revisions 0.0002 -0.0011 0.0702 -0.2413 0.1840 

USDA own Revisions 0.0097 0.0000 0.1249 -0.5988 0.4098 
Analysts own Revisions 0.0080 0.0034 0.1271 -0.6372 0.3805 

      
Corn, Median      

Type A Revisions 0.0084 0.0000 0.1111 -0.5626 0.3746 
Type B Revisions -0.0004 0.0000 0.0712 -0.2468 0.2011 

USDA own Revisions 0.0097 0.0000 0.1249 -0.5988 0.4098 
Analysts own Revisions 0.0080 0.0066 0.1294 -0.5967 0.4260 

      
Soybeans, Average      
Type A Revisions -0.0068 -0.0192 0.1220 -0.3724 0.6496 
Type B Revisions -0.0064 -0.0029 0.0740 -0.2776 0.1912 

USDA own Revisions -0.0132 0.0000 0.1387 -0.3830 0.7569 
Analysts own Revisions -0.0132 -0.0123 0.1388 -0.4953 0.5821 

      
Soybeans, Median      
Type A Revisions -0.0070 -0.0040 0.1193 -0.4212 0.6799 
Type B Revisions -0.0047 0.0000 0.0757 -0.2744 0.1719 

USDA own Revisions -0.0132 0.0000 0.1387 -0.3830 0.7569 
Analysts own Revisions -0.0117 -0.0082 0.1405 -0.4533 0.6747 

 
Note: summary statistics are displayed in logarithms. 
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Table 4.2. Means and standard deviations for the estimates of USDA and analysts ending stocks forecasts, 2004/05 – 2013/14 

 Corn Soybeans 
Parameter USDA vs. Ana. Avg. USDA vs. Ana. Med. USDA vs. Ana. Avg. USDA vs. Ana. Med. 

 Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) Mean (St. dev.) 
         

Coefficient         
𝛼𝛼𝐴𝐴 0.0013 (0.0026) 0.0008 (0.0021) -0.0242 (0.0066)** -0.0239 (0.0067)** 
𝛽𝛽1𝐴𝐴 0.0360 (0.0435) 0.0431 (0.0347) 0.6359 (0.1346)** 0.6639 (0.1031)** 
𝛽𝛽2𝐴𝐴 0.1924 (0.0498)** 0.1449 (0.0389)** 0.4165 (0.0765)** 0.3746 (0.0831)** 
𝛼𝛼𝐵𝐵 0.0010 (0.0043) 0.0014 (0.0040) 0.0071 (0.0065) 0.0067 (0.0070) 
𝛽𝛽1𝐵𝐵 -0.0631 (0.0691) -0.0842 (0.0678) 0.0618 (0.0694) 0.1143 (0.0820) 
𝛽𝛽2𝐵𝐵 0.1631 (0.0568)** 0.1501 (0.0548)** 0.0682 (0.0582) 0.0610 (0.0579) 

         
Shocks (range)         

𝜎𝜎𝑘𝑘𝐴𝐴 0.0073 – 0.2629 0.0049 – 0.2791 0.0161 – 0.2989 0.0160 – 0.3114 
𝜎𝜎𝑘𝑘𝐵𝐵 0.0182 – 0.1306 0.0183 – 0.1318 0.0213 – 0.1501 0.0154 – 0.1496 

         
Idiosyncratic Err.         

𝜎𝜎𝐴𝐴 0.0164 (0.0026) 0.0135 (0.0020) 0.0575 (0.0053) 0.0593 (0.0055) 
𝜎𝜎𝐵𝐵 0.0056 (0.0033) 0.0033 (0.0021) 0.0094 (0.0054) 0.0094 (0.0050) 

         
 
Note: (*) and (**) denote parameter estimates significant at 10% and 5%, respectively. The standard errors for the idiosyncratic errors 
and shocks are all significant at 5% level, and hence the indicators are omitted. 
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Table 4.3. Medians and 95% credible intervals for the estimates of USDA and analysts ending 
stocks forecasts, 2004/05 – 2013/14 

Parameter USDA vs. Ana. Avg. USDA vs. Ana. Med. 
2.5% Median 97.5% 2.5% Median 97.5% 

       
 Corn 

Coefficient       
𝛼𝛼𝐴𝐴 -0.0041 0.0013 0.0062 -0.0033 0.0008 0.0049 
𝛽𝛽1𝐴𝐴 -0.0469 0.0359 0.1262 -0.0243 0.0430 0.1092 
𝛽𝛽2𝐴𝐴 0.0998 0.1916 0.2967 0.0713 0.1446 0.2222 
𝛼𝛼𝐵𝐵 -0.0074 0.0010 0.0093 -0.0057 0.0014 0.0090 
𝛽𝛽1𝐵𝐵 -0.1915 -0.0643 0.0735 -0.2103 -0.0810 0.0505 
𝛽𝛽2𝐵𝐵 0.0495 0.1621 0.2872 0.0458 0.1478 0.2597 

       
Idiosyncratic Err.       

𝜎𝜎𝐴𝐴 0.0117 0.0164 0.0216 0.0100 0.0133 0.0180 
𝜎𝜎𝐵𝐵 0.0004 0.0054 0.0126 0.0002 0.0030 0.0081 

       
 Soybeans 

Coefficient       
𝛼𝛼𝐴𝐴 -0.0374 -0.0241 -0.0113 -0.0367 -0.0240 -0.0105 
𝛽𝛽1𝐴𝐴 0.3708 0.6363 0.9192 0.4471 0.6736 0.8476 
𝛽𝛽2𝐴𝐴 0.2638 0.4168 0.5651 0.2132 0.3742 0.5365 
𝛼𝛼𝐵𝐵 -0.0057 0.0070 0.0201 -0.0072 0.0068 0.0201 
𝛽𝛽1𝐵𝐵 -0.0677 0.0594 0.2020 -0.0430 0.1134 0.2812 
𝛽𝛽2𝐵𝐵 -0.0418 0.0681 0.1851 -0.0538 0.0604 0.1748 

       
Idiosyncratic Err.       

𝜎𝜎𝐴𝐴 0.0480 0.0571 0.0686 0.0495 0.0590 0.0708 
𝜎𝜎𝐵𝐵 0.0007 0.0091 0.0204 0.0009 0.0093 0.0196 
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